• Lancet neurology · Dec 2015

    Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study.

    • Ghayda M Mirzaa, Valerio Conti, Andrew E Timms, Christopher D Smyser, Sarah Ahmed, Melissa Carter, Sarah Barnett, Robert B Hufnagel, Amy Goldstein, Yoko Narumi-Kishimoto, Carissa Olds, Sarah Collins, Kathreen Johnston, Jean-François Deleuze, Patrick Nitschké, Kathryn Friend, Catharine Harris, Allison Goetsch, Beth Martin, Evan August Boyle, Elena Parrini, Davide Mei, Lorenzo Tattini, Anne Slavotinek, Ed Blair, Christopher Barnett, Jay Shendure, Jamel Chelly, William B Dobyns, and Renzo Guerrini.
    • Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA. Electronic address: gmirzaa@uw.edu.
    • Lancet Neurol. 2015 Dec 1;14(12):1182-95.

    BackgroundBilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment, and epilepsy. The causes of BPP are heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic causes of BPP and characterise their frequency in this population.MethodsChildren (aged ≤18 years) with polymicrogyria were enrolled into our research programme from July, 1980, to October, 2015, at two centres (Florence, Italy, and Seattle, WA, USA). We obtained samples (blood and saliva) throughout this period at both centres and did whole-exome sequencing on DNA from eight trios (two parents and one affected child) with BPP in 2014. After the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 by two methods in a cohort of 118 children with BPP. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal to large head size. Second, we did amplicon sequencing of the recurrent PIK3R2 mutation (Gly373Arg) in 80 children with various types of polymicrogyria including BPP. One additional patient had clinical whole-exome sequencing done independently, and was included in this study because of the phenotypic similarity to our cohort.FindingsWe identified a mosaic mutation (Gly373Arg) in a regulatory subunit of the PI3K-AKT-mTOR pathway, PIK3R2, in two children with BPP. Of the 38 patients with BPP and normal to large head size who underwent targeted next-generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient had the recurrent PIK3R2 mutation identified by clinical whole-exome sequencing. Seven of these 20 patients had BPP alone, and 13 had BPP in association with features of the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. 19 patients had the same mutation (Gly373Arg), and one had a nearby missense mutation (Lys376Glu). Mutations were constitutional in 12 patients and mosaic in eight patients. In patients with mosaic mutations, we noted substantial variation in alternate (mutant) allele levels, ranging from ten (3%) of 377 reads to 39 (37%) of 106 reads, equivalent to 5-73% of cells analysed. Levels of mosaicism varied from undetectable to 37 (17%) of 216 reads in blood-derived DNA compared with 2030 (29%) of 6889 reads to 275 (43%) of 634 reads in saliva-derived DNA.InterpretationConstitutional and mosaic mutations in the PIK3R2 gene are associated with developmental brain disorders ranging from BPP with a normal head size to the MPPH syndrome. The phenotypic variability and low-level mosaicism, which challenge conventional molecular methods, have important implications for genetic testing and counselling.FundingUS National Institutes of Health.Copyright © 2015 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.