-
Comparative Study
New ST-segment elevation myocardial infarction criteria for left bundle branch block based on QRS area.
- Richard E Gregg, Eric D Helfenbein, and Saeed Babaeizadeh.
- Advanced Algorithm Research Center, Philips Healthcare, Andover, MA, USA. Electronic address: rich.gregg@philips.com.
- J Electrocardiol. 2013 Nov 1;46(6):528-34.
BackgroundECG detection of ST-segment elevation myocardial infarction (STEMI) in the presence of left bundle-branch block (LBBB) is challenging due to ST deviation from the altered conduction. The purpose of this study was to introduce a new algorithm for STEMI detection in LBBB and compare the performance to three existing algorithms.MethodsSource data of the study group (143 with acute MI and 239 controls) comes from multiple sources. ECGs were selected by computer interpretation of LBBB. Acute MI reference was hospital discharge diagnosis. Automated measurements came from the Philips DXL algorithm. Three existing algorithms were compared, (1) Sgarbossa criteria, (2) Selvester 10% RS criteria and (3) Smith 25% S-wave criteria. The new algorithm uses an ST threshold based on QRS area. All algorithms share the concordant ST elevation and anterior ST depression criteria from the Sgarbossa score. The difference is in the threshold for discordant ST elevation. The Sgarbossa, Selvester, Smith and Philips discordant ST elevation criteria are (1) ST elevation ≥ 500 μV, (2) ST elevation ≥ 10% of |S|-|R| plus STEMI limits, (3) ST elevation ≥ 25% of the S-wave amplitude and (4) ST elevation ≥ 100 μV + 1050 μV/Ash * QRS area. The Smith S-wave and Philips QRS area criteria were tested using both a single and 2 lead requirement. Algorithm performance was measured by sensitivity, specificity, and positive likelihood ratio (LR+).ResultsAlgorithm performance can be organized in bands of similar sensitivity and specificity ranging from Sgarbossa score ≥ 3 with the lowest sensitivity and highest specificity, 13.3% and 97.9%, to the Selvester 10% rule with the highest sensitivity and lower specificity of 30.1% and 93.2%. The Smith S-wave and Philips QRS area algorithms were in the middle band with sensitivity and specificity of (20.3%, 94.9%) and (23.8%, 95.8%) respectively.ConclusionAs can be seen from the difference between Sgarbossa score ≥ 3 and other algorithms for STEMI in LBBB, a discordant ST elevation criterion improves the sensitivity for detection but also results in a drop in specificity. For applications of automated STEMI detection that require higher sensitivity, the Selvester algorithm is better. For applications that require a low false positive rate such as relying on the algorithm for pre-hospital activation of cardiac catheterization laboratory for urgent PCI, it may be better to use the 2 lead Philips QRS area or Smith 25% S-wave algorithm.© 2013.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.