• Eur. J. Pharmacol. · Aug 2016

    Review

    COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance.

    • R Poorani, Anant N Bhatt, B S Dwarakanath, and Undurti N Das.
    • Insitute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India; BioScience Research Centre, Gayatri Vidya Parishad College of Engineering Campus, Visakhapatnam 530 048, India.
    • Eur. J. Pharmacol. 2016 Aug 15; 785: 116-132.

    AbstractPolyunsaturated fatty acids (PUFAs) are vital for normal growth and development and physiological function of various tissues in humans. PUFAs have immunomodulatory actions in addition to their ability to modulate inflammation, vascular reactivity, neurotransmission and stem cell biology. PUFAs and their metabolites possess both pro- and anti-inflammatory properties that underlie their actions and involvement in several diseases. Aspirin, a non-steroidal anti-inflammatory drug (NSAID), possesses both cyclo-oxygenase (COX) and lipoxygenase (LOX) inhibitory action and enhances the production of anti-inflammatory lipoxin A4 {(called as epi-lipoxin A4, aspirin-triggered lipoxins (ATLs))}. In addition, at low doses aspirin may not interfere with the production of prostacyclin (PGI2). Both lipoxin A4 and PGI2 have vasodilator, platelet anti-aggregator and anti-inflammatory actions that may underlie the beneficial actions of aspirin. Paradoxically, other NSAIDs may not have the same actions as that of aspirin on PUFA metabolism. Similar anti-inflammatory compounds are formed from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by the action of aspirin termed as resolvins (from EPA and DHA) and protectins and maresins from DHA. PUFAs: arachidonic acid (AA), EPA and DHA and their various products modulate not only inflammation and immune response but also possess actions on various genes, nuclear factors, cyclic AMP and GMP, G-protein coupled receptors (GPRs), hypothalamic neurotransmitters, hormones, cytokines and enzymes, and interact with nitric oxide, carbon monoxide, and hydrogen sulfide to regulate their formation and action and to form new compounds that have several biological actions. These pleiotropic actions of PUFAs and their metabolites may explain their ability to play a role in several physiological actions and diseases. The big challenge is to harness these actions to prevent and manage clinical conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.