• Shock · Jul 2011

    Burn-induced acute lung injury requires a functional Toll-like receptor 4.

    • James Putnam, Brian Eliceiri, Raul Coimbra, Vishal Bansal, Michael Krzyzaniak, Gerald Cheadle, William Loomis, Paul Wolf, and Andrew Baird.
    • Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California, San Diego School of Medicine, San Diego, California, USA.
    • Shock. 2011 Jul 1;36(1):24-9.

    AbstractThe role of the Toll-like receptor 4 (TLR4), a component of the innate immune system, in the development of burn-induced acute lung injury (ALI) has not been completely defined. Recent data suggested that an intact TLR4 plays a major role in the development of organ injury in sterile inflammation. We hypothesized that burn-induced ALI is a TLR4-dependent process. Male C57BL/6J (TLR4 wild-type [WT]) and C57BL/10ScN (TLR4 knockout [KO]) mice were subjected to a 30% total body surface area steam burn. Animals were killed at 6 and 24 h after the insult. Lung specimens were harvested for histological examination after hematoxylin-eosin staining. In addition, lung myeloperoxidase (MPO) and intercellular adhesion molecule 1 immunostaining was performed. Lung MPO was measured by an enzymatic assay. Total lung keratinocyte-derived chemoattractant (IL-8) content was measured by enzyme-linked immunosorbent assay. Western blot was performed to quantify phosphorylated IκBα, phosphorylated nuclear factor κB p65 (NF-κBp65), and high mobility group box 1 expression. Acute lung injury, characterized by thickening of the alveolar-capillary membrane, hyaline membrane formation, intraalveolar hemorrhage, and neutrophil infiltration, was seen in WT but not KO animals at 24 h. Myeloperoxidase and intercellular adhesion molecule 1 immunostaining of KO animals was also similar to sham but elevated in WT animals. In addition, a reduction in MPO enzymatic activity was observed in KO mice as well as a reduction in IL-8 levels compared with their WT counterparts. Burn-induced ALI develops within 24 h after the initial thermal insult in our model. Toll-like receptor 4 KO animals were clearly protected and had a much less severe lung injury. Our data suggest that burn-induced ALI is a TLR4-dependent process.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.