• Brain research · Oct 2012

    Prevention of traumatic brain injury-induced neuronal death by inhibition of NADPH oxidase activation.

    • Bo Yong Choi, Bong Geom Jang, Jin Hee Kim, Bo Eun Lee, Min Sohn, Hong Ki Song, and Sang Won Suh.
    • Department of Physiology, Hallym University, College of Medicine, Chuncheon, South Korea.
    • Brain Res. 2012 Oct 24;1481:49-58.

    AbstractThe present study aimed to evaluate the therapeutic potential of apocynin, an NADPH oxidase assembly inhibitor, on traumatic brain injury. Rat traumatic brain injury (TBI) was performed using a weight drop model. Apocynin (100mg/kg) was injected into the intraperitoneal space 15 min before TBI. Reactive oxygen species (ROS) in the hippocampal CA3 pyramidal neurons were detected by dihydroethidium (dHEt) at 3h after TBI. Oxidative injury was detected by 4-hydroxy-2-nonenal (4HNE) at 6h after TBI. Blood-brain barrier disruption was detected by IgG extravasation and neuronal death was evaluated with Fluoro Jade-B staining 24h after TBI. Microglia activation was detected by CD11b immunohistochemistry in the hippocampus at 1 week after TBI. ROS production was inhibited by apocynin administration in the hippocampal CA3 pyramidal neurons. This pre-treatment with apocynin decreased the blood-brain barrier disruption, the number of degenerating neurons in the hippocampal CA3 region and microglial activation after TBI. The present study indicates that apocynin pre-treatment prevents TBI-induced ROS production, thus decreasing BBB disruption, neuronal death and microglial activation. Therefore, the present study suggests that inhibition of NADPH oxidase by apocynin may have a high therapeutic potential to reduce traumatic brain injury-induced neuronal death.Copyright © 2012 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.