-
- J Geoffrey Chase, Geoffrey Shaw, Aaron Le Compte, Timothy Lonergan, Michael Willacy, Xing-Wei Wong, Jessica Lin, Thomas Lotz, Dominic Lee, and Christopher Hann.
- Department of Mechanical Engineering, University of Canterbury, Clyde Road, Private Bag 4800, Christchurch 8140, New Zealand. geoff.chase@canterbury.ac.nz
- Crit Care. 2008 Jan 1;12(2):R49.
IntroductionStress-induced hyperglycaemia is prevalent in critical care. Control of blood glucose levels to within a 4.4 to 6.1 mmol/L range or below 7.75 mmol/L can reduce mortality and improve clinical outcomes. The Specialised Relative Insulin Nutrition Tables (SPRINT) protocol is a simple wheel-based system that modulates insulin and nutritional inputs for tight glycaemic control.MethodsSPRINT was implemented as a clinical practice change in a general intensive care unit (ICU). The objective of this study was to measure the effect of the SPRINT protocol on glycaemic control and mortality compared with previous ICU control methods. Glycaemic control and mortality outcomes for 371 SPRINT patients with a median Acute Physiology And Chronic Health Evaluation (APACHE) II score of 18 (interquartile range [IQR] 15 to 24) are compared with a 413-patient retrospective cohort with a median APACHE II score of 18 (IQR 15 to 23).ResultsOverall, 53.9% of all measurements were in the 4.4 to 6.1 mmol/L band. Blood glucose concentrations were found to be log-normal and thus log-normal statistics are used throughout to describe the data. The average log-normal glycaemia was 6.0 mmol/L (standard deviation 1.5 mmol/L). Only 9.0% of all measurements were below 4.4 mmol/L, with 3.8% below 4 mmol/L and 0.1% of measurements below 2.2 mmol/L. On SPRINT, 80% more measurements were in the 4.4 to 6.1 mmol/L band and standard deviation of blood glucose was 38% lower compared with the retrospective control. The range and peak of blood glucose were not correlated with mortality for SPRINT patients (P >0.30). For ICU length of stay (LoS) of greater than or equal to 3 days, hospital mortality was reduced from 34.1% to 25.4% (-26%) (P = 0.05). For ICU LoS of greater than or equal to 4 days, hospital mortality was reduced from 34.3% to 23.5% (-32%) (P = 0.02). For ICU LoS of greater than or equal to 5 days, hospital mortality was reduced from 31.9% to 20.6% (-35%) (P = 0.02). ICU mortality was also reduced but the P value was less than 0.13 for ICU LoS of greater than or equal to 4 and 5 days.ConclusionSPRINT achieved a high level of glycaemic control on a severely ill critical cohort population. Reductions in mortality were observed compared with a retrospective hyperglycaemic cohort. Range and peak blood glucose metrics were no longer correlated with mortality outcome under SPRINT.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.