• Plos One · Jan 2011

    The astrocyte-targeted therapy by Bushi for the neuropathic pain in mice.

    • Keisuke Shibata, Takeshi Sugawara, Kayoko Fujishita, Youichi Shinozaki, Takashi Matsukawa, Tsutomu Suzuki, and Schuichi Koizumi.
    • Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan.
    • Plos One. 2011 Jan 1;6(8):e23510.

    BackgroundThere is accumulating evidence that the activation of spinal glial cells, especially microglia, is a key event in the pathogenesis of neuropathic pain. However, the inhibition of microglial activation is often ineffective, especially for long-lasting persistent neuropathic pain. So far, neuropathic pain remains largely intractable and a new therapeutic strategy for the pain is still required.Methods/Principal FindingsUsing Seltzer model mice, we investigated the temporal aspect of two types of neuropathic pain behaviors, i.e., thermal hyperalgesia and mechanical allodynia, as well as that of morphological changes in spinal microglia and astrocytes by immunohistochemical studies. Firstly, we analyzed the pattern of progression in the pain behaviors, and found that the pain consisted of an "early induction phase" and subsequent "late maintenance phase". We next analyzed the temporal changes in spinal glial cells, and found that the induction and the maintenance phase of pain were associated with the activation of microglia and astrocytes, respectively. When Bushi, a Japanese herbal medicine often used for several types of persistent pain, was administered chronically, it inhibited the maintenance phase of pain without affecting the induction phase, which was in accordance with the inhibition of astrocytic activation in the spinal cord. These analgesic effects and the inhibition of astrocytic activation by Bushi were mimicked by the intrathecal injection of fluorocitrate, an inhibitor of astrocytic activation. Finally, we tested the direct effect of Bushi on astrocytic activation, and found that Bushi suppressed the IL-1β- or IL-18-evoked ERK1/2-phosphorylation in cultured astrocytes but not the ATP-evoked p38- and ERK1/2-phosphorylation in microglia in vitro.ConclusionsOur results indicated that the activation of spinal astrocytes was responsible for the late maintenance phase of neuropathic pain in the Seltzer model mice and, therefore, the inhibition of astrocytic activation by Bushi could be a useful therapeutic strategy for treating neuropathic pain.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…