• Alcohol. Clin. Exp. Res. · Jun 2005

    Ethanol-induced activation of myosin light chain kinase leads to dysfunction of tight junctions and blood-brain barrier compromise.

    • James Haorah, David Heilman, Bryan Knipe, Jesse Chrastil, Jessica Leibhart, Anuja Ghorpade, Donald W Miller, and Yuri Persidsky.
    • Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
    • Alcohol. Clin. Exp. Res. 2005 Jun 1;29(6):999-1009.

    BackgroundBrain endothelial cells form the blood-brain barrier (BBB) that regulates solute and macromolecule flux in and out of the brain, leukocyte migration, and maintains the homeostasis of the central nervous system. BBB dysfunction is associated with disruption of tight junctions (TJ) in the brain endothelium. We propose that alcohol abuse may impair BBB permeability through TJ modification.MethodsPrimary cultured bovine brain microvascular endothelial cells (BBMEC) were treated with 50 mM ethanol (EtOH), and monolayer tightness was assessed by measurement of transendothelial electrical resistance (TEER). Changes in TEER were correlated with alterations in TJ protein distribution [occludin, zonula occludens-1 (ZO-1), claudin-5] using immunofluorescence (IF). Expression of myosin light chain (MLC) kinase (MLCK), ZO-1, claudin-5, and phosphorylated MLC, occludin and claudin-5 were determined by immunoprecipitation and Western blot. EtOH-induced changes in monocyte migration across in vitro BBB constructs were also examined.ResultsEtOH induced a decrease in TEER of BBMEC monolayers that was reversed by EtOH withdrawal. Treatment of BBMEC with EtOH or its metabolite, acetaldehyde, prior to monocyte application resulted in a 2-fold increase in monocyte migration across the BBB. IF demonstrated decrease in claudin-5 staining, occludin translocation from cell borders to cytoplasm and gap formation in EtOH-treated BBMEC monolayer. These changes paralleled significant increase in phosphorylation of MLC, occludin and claudin-5. EtOH-treated BBMEC showed reduction of total occludin and claudin-5 without changes in ZO-1 or MLC. TEER decrease, changes in occludin/claudin staining, increase in MLC, occludin and claudin-5 phosphorylation and enhanced monocyte migration across the BBB were all reversed by inhibition of MLCK. Inhibition of EtOH metabolism in BBMEC also reversed these events.ConclusionThese results suggest that EtOH activates MLCK leading to phosphorylation of MLC, occludin and claudin-5. Cytoskeletal alterations (MLC) and TJ changes (occludin and claudin-5 phosphorylation) result in BBB impairment (decrease in TEER). TJ compromise is associated with increased monocyte migration across the BBB.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.