• Neurochem. Int. · Dec 2014

    Small-molecule inhibitors at the PSD-95/nNOS interface attenuate MPP+-induced neuronal injury through Sirt3 mediated inhibition of mitochondrial dysfunction.

    • Wei Hu, Lai-Shun Guan, Xing-Bo Dang, Peng-Yu Ren, and Yue-Lin Zhang.
    • Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shannxi 710061, China; Department of Emergency, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China.
    • Neurochem. Int. 2014 Dec 1;79:57-64.

    AbstractPost-synaptic density protein 95 (PSD-95) links neuronal nitric oxide synthase (nNOS) with the N-methyl-D-aspartic acid (NMDA) receptor in the central nervous system, and this molecular complex has been implicated in regulating neuronal excitability in several neurological disorders. Here, small-molecule inhibitors of the PSD-95/nNOS interaction, IC87201 and ZL006 were tested for neuroprotective effects in an in vitro Parkinson's disease (PD) model. We now report that IC87201 and ZL006 reduced MPP(+)-induced neuronal injury and apoptotic cell death in a dose-dependent manner in cultured cortical neurons. These protective effects were associated with suppressed mitochondrial dysfunction, as evidenced by decreased reactive oxygen species (ROS) generation, cytochrome c release, mitochondrial membrane potential (MMP) collapse, and the preserved mitochondrial complex I activity and ATP synthesis. IC87201 and ZL006 also preserved intracellular homeostasis through mitigating mitochondrial Ca(2+) uptake and promoting mitochondrial Ca(2+) buffering capacity. Moreover, treatment with IC87201 and ZL006 significantly increased the expression of Sirt3 after MPP(+) exposure, and knockdown of Sirt3 using specific targeted small interfere RNA (siRNA) partially nullified the protective effects induced by these two inhibitors. These data strongly support the hypothesis that targeting the PSD-95/nNOS interaction produces neuroprotective effects and may represent a novel class of therapeutics for PD as well as other neurological diseases where detrimental NMDA receptor signaling plays a major role.Copyright © 2014 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.