-
- Yasuharu Okuda, Ethan O Bryson, Samuel DeMaria, Lisa Jacobson, Joshua Quinones, Bing Shen, and Adam I Levine.
- Department of Emergency Medicine and Medical Education, Mount Sinai School of Medicine, New York, NY, USA. yasuharu.okuda@mssm.edu
- Mt. Sinai J. Med. 2009 Aug 1; 76 (4): 330-43.
AbstractMedical schools and residencies are currently facing a shift in their teaching paradigm. The increasing amount of medical information and research makes it difficult for medical education to stay current in its curriculum. As patients become increasingly concerned that students and residents are "practicing" on them, clinical medicine is becoming focused more on patient safety and quality than on bedside teaching and education. Educators have faced these challenges by restructuring curricula, developing small-group sessions, and increasing self-directed learning and independent research. Nevertheless, a disconnect still exists between the classroom and the clinical environment. Many students feel that they are inadequately trained in history taking, physical examination, diagnosis, and management. Medical simulation has been proposed as a technique to bridge this educational gap. This article reviews the evidence for the utility of simulation in medical education. We conducted a MEDLINE search of original articles and review articles related to simulation in education with key words such as simulation, mannequin simulator, partial task simulator, graduate medical education, undergraduate medical education, and continuing medical education. Articles, related to undergraduate medical education, graduate medical education, and continuing medical education were used in the review. One hundred thirteen articles were included in this review. Simulation-based training was demonstrated to lead to clinical improvement in 2 areas of simulation research. Residents trained on laparoscopic surgery simulators showed improvement in procedural performance in the operating room. The other study showed that residents trained on simulators were more likely to adhere to the advanced cardiac life support protocol than those who received standard training for cardiac arrest patients. In other areas of medical training, simulation has been demonstrated to lead to improvements in medical knowledge, comfort in procedures, and improvements in performance during retesting in simulated scenarios. Simulation has also been shown to be a reliable tool for assessing learners and for teaching topics such as teamwork and communication. Only a few studies have shown direct improvements in clinical outcomes from the use of simulation for training. Multiple studies have demonstrated the effectiveness of simulation in the teaching of basic science and clinical knowledge, procedural skills, teamwork, and communication as well as assessment at the undergraduate and graduate medical education levels. As simulation becomes increasingly prevalent in medical school and resident education, more studies are needed to see if simulation training improves patient outcomes.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.