• Neurobiol Learn Mem · Mar 2014

    Voluntary exercise followed by chronic stress strikingly increases mature adult-born hippocampal neurons and prevents stress-induced deficits in 'what-when-where' memory.

    • Estela Castilla-Ortega, Cristina Rosell-Valle, Carmen Pedraza, Fernando Rodríguez de Fonseca, Guillermo Estivill-Torrús, and Luis J Santín.
    • Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario Carlos Haya, Instituto de Investigación Biomédica de Málaga (IBIMA), Spain. Electronic address: estela.castilla@fundacionimabis.org.
    • Neurobiol Learn Mem. 2014 Mar 1;109:62-73.

    AbstractWe investigated whether voluntary exercise prevents the deleterious effects of chronic stress on episodic-like memory and adult hippocampal neurogenesis. After bromodeoxyuridine (BrdU) administration, mice were assigned to receive standard housing, chronic intermittent restraint stress, voluntary exercise or a combination of both (stress starting on the seventh day of exercise). Twenty-four days later, mice were tested in a 'what-when-where' object recognition memory task. Adult hippocampal neurogenesis (proliferation, differentiation, survival and apoptosis) and c-Fos expression in the hippocampus and extra-hippocampal areas (medial prefrontal cortex, amygdala, paraventricular hypothalamic nucleus, accumbens and perirhinal cortex) were assessed after behavior. Chronic intermittent restraint stress impaired neurogenesis and the 'when' memory, while exercise promoted neurogenesis and improved the 'where' memory. The 'when' and 'where' memories correlated with c-Fos expression in CA1 and the dentate gyrus, respectively. Furthermore, analysis suggested that each treatment induced a distinct pattern of functional connectivity among the areas analyzed for c-Fos. In the animals in which stress and exercise were combined, stress notably reduced the amount of voluntary exercise performed. Nevertheless, exercise still improved memory and counteracted the stress induced-deficits in neurogenesis and behavior. Interestingly, compared with the other three treatments, the stressed exercising animals showed a larger increase in cell survival, the maturation of new neurons and apoptosis in the dentate gyrus, with a considerable increase in the number of 24-day-old BrdU+cells that differentiated into mature neurons. The interaction between exercise and stress in enhancing the number of adult-born hippocampal neurons supports a role of exercise-induced neurogenesis in stressful conditions.Copyright © 2013 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.