-
Pediatr Crit Care Me · Nov 2012
Case ReportsBrain tissue oxygenation-guided management of diabetic ketoacidosis induced cerebral edema*.
- Nicole F O'Brien and Cesar Mella.
- Department of Pediatrics, Section of Critical Care Medicine, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA. Nicole.OBrien@nationwidechildrens.org
- Pediatr Crit Care Me. 2012 Nov 1;13(6):e383-8.
ObjectiveType 1 diabetes mellitus is the most common chronic disease of childhood. Diabetic ketoacidosis is a well-known complication of diabetes mellitus and can be associated with devastating cerebral edema resulting in severe long-term neurologic disability. Despite the significant morbidity and mortality associated with this condition, relatively few treatments are recommended for these patients. The authors present two patients in which they used both intracranial pressure and brain tissue oxygenation monitoring to manage diabetic ketoacidosis-associated cerebral edema with favorable neurologic outcomes.SettingPediatric intensive care unit in a tertiary care teaching hospital.InterventionsTwo children presented to the emergency room with vague complaints and were found to have diabetic ketoacidosis. During treatment, both patients became comatose with head computed tomography scans revealing diffuse cerebral edema and herniation syndrome. Intracranial pressure and brain tissue oxygenation monitors were placed to guide therapy.ResultsMultiple episodes of brain tissue hypoxia were noted in both patients. Intracranial pressure control with intubation, sedation, and hyperosmolar therapy improved episodes of decreased brain tissue oxygenation associated with intracranial hypertension. Brain tissue oxygenation was also noted to be significantly less than the target value on several occasions even when intracranial pressure was controlled and an age-appropriate cerebral perfusion pressure goal was met. Augmentation of cerebral perfusion pressure above age-appropriate goal with fluid boluses and inotropic agents increased brain tissue oxygenation in these instances. Both children had very low Glasgow Coma Scale scores at admission, but ultimately had favorable neurologic outcomes.ConclusionsMultimodal neuromonitoring of both intracranial pressure and brain tissue oxygenation during episodes of clinically apparent diabetic ketoacidosis-associated cerebral edema allows for the detection and treatment of episodes of elevated intracranial pressure and/or brain tissue hypoxia that may be of clinical significance.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.