• Rev Neurol France · May 2004

    Review

    [Genetic of diseases by abnormal functioning of the skeletal muscle-calcium releasing complex].

    • J Lunardi and N Monnier.
    • Laboratoire de Biochimie de l'ADN, CHU Grenoble & INSERM EMI 99-31. jlunardi@chu-grenoble.fr
    • Rev Neurol France. 2004 May 1;160(5 Pt 2):S70-7.

    AbstractMyoplasmic calcium homeostasis is an essential feature of skeletal muscle contraction. The calcium mobilisation complex (CMC) located at the level of the triadic junction plays a major role for the regulation of calcium fluxes between extra-cellular, cytoplasmic and intra-cellular compartments. The ryanodine receptor type I (RYR1), which is located at the level of the terminal cisternae of the sarcoplasmic reticulum is a key component of the CMC. RYR1 allow the release into the myoplasm of the intralumenal stores of calcium. RYR1 interacts with other proteins: DiHydroPyridine Receptor, triadin, calsequestrin, FKBP12, calmodulin. Malignant hyperthermia (MHS) and congenital core myopathies have been associated with a dysfunction of the CMC. MHS is an autosomic dominant pharmacogenetic disease. The MH crisis is induced by exposure of the predisposed patients to halogenated volatile anaesthetics. MHS is characterised by a genetic heterogeneity and two genes, RYR1 and CACNA1S, have been associated so far with the disease. Mutations in the RYR1 gene have been recently associated with heat stroke, a related syndrome. Central Core Disease (CCD) and Multi minicore Disease (MmD) are congenital myopathies presenting with clinical variability and characterized by the presence of specific although heterogeneous muscle histological features: the cores. Clinical boundaries between the two diseases may overlap and the specific diagnosis is often based on the nature of the cores. These diseases show genetic heterogeneity with both autosomic dominant and recessive mode of inheritance and mutations in the SEPN1, RYR1, ACTA1, TPM3 genes have been reported. Mutations associated with MHS were mainly identified into 2 regions of the N-terminal part of RYR1. Functional role of these two domains is still unclear. Mutations responsible for congenital myopathies mainly mapped to the C terminal region of RYR1 that form the transmembrane calcium channel. Functional studies of the RYR1 mutations have shown that MHS mutations were mainly associated with an alteration of the calcium fluxes in response to caffeine or halothane while CCD mutations would result in a leaky RYR1 channel or would alter the Excitation-Contraction coupling at the level of the CMC.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.