• JAMA · Aug 2011

    Automated identification of postoperative complications within an electronic medical record using natural language processing.

    • Harvey J Murff, Fern FitzHenry, Michael E Matheny, Nancy Gentry, Kristen L Kotter, Kimberly Crimin, Robert S Dittus, Amy K Rosen, Peter L Elkin, Steven H Brown, and Theodore Speroff.
    • Tennessee Valley Healthcare System, Veterans Affairs Medical Center, Nashville, TN, USA. harvey.j.murff@vanderbilt.edu
    • JAMA. 2011 Aug 24;306(8):848-55.

    ContextCurrently most automated methods to identify patient safety occurrences rely on administrative data codes; however, free-text searches of electronic medical records could represent an additional surveillance approach.ObjectiveTo evaluate a natural language processing search-approach to identify postoperative surgical complications within a comprehensive electronic medical record.Design, Setting, And PatientsCross-sectional study involving 2974 patients undergoing inpatient surgical procedures at 6 Veterans Health Administration (VHA) medical centers from 1999 to 2006.Main Outcome MeasuresPostoperative occurrences of acute renal failure requiring dialysis, deep vein thrombosis, pulmonary embolism, sepsis, pneumonia, or myocardial infarction identified through medical record review as part of the VA Surgical Quality Improvement Program. We determined the sensitivity and specificity of the natural language processing approach to identify these complications and compared its performance with patient safety indicators that use discharge coding information.ResultsThe proportion of postoperative events for each sample was 2% (39 of 1924) for acute renal failure requiring dialysis, 0.7% (18 of 2327) for pulmonary embolism, 1% (29 of 2327) for deep vein thrombosis, 7% (61 of 866) for sepsis, 16% (222 of 1405) for pneumonia, and 2% (35 of 1822) for myocardial infarction. Natural language processing correctly identified 82% (95% confidence interval [CI], 67%-91%) of acute renal failure cases compared with 38% (95% CI, 25%-54%) for patient safety indicators. Similar results were obtained for venous thromboembolism (59%, 95% CI, 44%-72% vs 46%, 95% CI, 32%-60%), pneumonia (64%, 95% CI, 58%-70% vs 5%, 95% CI, 3%-9%), sepsis (89%, 95% CI, 78%-94% vs 34%, 95% CI, 24%-47%), and postoperative myocardial infarction (91%, 95% CI, 78%-97%) vs 89%, 95% CI, 74%-96%). Both natural language processing and patient safety indicators were highly specific for these diagnoses.ConclusionAmong patients undergoing inpatient surgical procedures at VA medical centers, natural language processing analysis of electronic medical records to identify postoperative complications had higher sensitivity and lower specificity compared with patient safety indicators based on discharge coding.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…