• IEEE Trans Biomed Eng · Feb 2005

    Clinical Trial

    Brain shift estimation in image-guided neurosurgery using 3-D ultrasound.

    • Marloes M J Letteboer, Peter W A Willems, Max A Viergever, and Wiro J Niessen.
    • Image Sciences Institute, University Medical Center, 3584 CX Utrecht, The Netherlands. marloes@isi.uu.nl
    • IEEE Trans Biomed Eng. 2005 Feb 1;52(2):268-76.

    AbstractIntraoperative brain deformation is one of the most important causes affecting the overall accuracy of image-guided neurosurgical procedures. One option for correcting for this deformation is to acquire three-dimensional (3-D) ultrasound data during the operation and use this data to update the information provided by the preoperatively acquired MR data. For 12 patients 3-D ultrasound images have been reconstructed from freehand sweeps acquired during neurosurgical procedures. Ultrasound data acquired prior to and after opening the dura, but prior to surgery, have been quantitatively compared to the preoperatively acquired MR data to estimate the rigid component of brain shift at the first stages of surgery. Prior to opening the dura the average brain shift measured was 3.0 mm parallel to the direction of gravity, with a maximum of 7.5 mm, and 3.9 mm perpendicular to the direction of gravity, with a maximum of 8.2 mm. After opening the dura the shift increased on average 0.2 mm parallel to the direction of gravity and 1.4 mm perpendicular to the direction of gravity. Brain shift can be detected by acquiring 3-D ultrasound data during image-guided neurosurgery. Therefore, it can be used as a basis for correcting image data and preoperative planning for intraoperative deformations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.