• Am. J. Physiol. Heart Circ. Physiol. · Feb 2012

    Clinical Trial

    Spontaneous fluctuations in the peripheral photoplethysmographic waveform: roles of arterial pressure and muscle sympathetic nerve activity.

    • Gregory S H Chan, Azharuddin Fazalbhoy, Ingvars Birznieks, Vaughan G Macefield, Paul M Middleton, and Nigel H Lovell.
    • 1School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales.
    • Am. J. Physiol. Heart Circ. Physiol. 2012 Feb 1;302(3):H826-36.

    AbstractAssessment of spontaneous slow waves in the peripheral blood volume using the photoplethysmogram (PPG) has shown potential clinical value, but the physiological correlates of these fluctuations have not been fully elucidated. This study addressed the contribution of arterial pressure and muscle sympathetic nerve activity (MSNA) in beat-to-beat PPG variability in resting humans under spontaneous breathing conditions. Peripheral PPG waveforms were measured from the fingertip, earlobe, and toe in young and healthy individuals (n = 13), together with the arterial pressure waveform, electrocardiogram, respiration, and direct measurement of MSNA by microneurography. Cross-spectral coherence analysis revealed that among the PPG waveforms, low-frequency fluctuations (0.04-0.15 Hz) in the ear PPG had the highest coherence with arterial pressure (0.71 ± 0.15) and MSNA (0.44 ± 0.18, with a peak of 0.71 ± 0.16 at 0.10 ± 0.03 Hz). The normalized midfrequency powers (0.08-0.15 Hz), with an emphasis on the 0.1-Hz region, were positively correlated between MSNA and the ear PPG (r = 0.77, P = 0.002). Finger and toe PPGs had lower coherence with arterial pressure (0.35 ± 0.10 and 0.30 ± 0.11, respectively) and MSNA (0.33 ± 0.10 and 0.26 ± 0.10, respectively) in the LF band but displayed higher coherence between themselves (0.54 ± 0.09) compared with the ear (P < 0.001), which may suggest the dominance of regional vasomotor activities and a common sympathetic influence in the glabrous skin. These findings highlight the differential mechanisms governing PPG waveform fluctuations across different body sites. Spontaneous PPG variability in the ear includes a major contribution from arterial pressure and MSNA, which may provide a rationale for its clinical utility.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…