• Arch Gen Psychiat · Nov 2006

    Randomized Controlled Trial

    Dysregulation of endogenous opioid emotion regulation circuitry in major depression in women.

    • Susan E Kennedy, Robert A Koeppe, Elizabeth A Young, and Jon-Kar Zubieta.
    • Department of Psychiatry, University of Michigan, Ann Arbor 48109-0720, USA.
    • Arch Gen Psychiat. 2006 Nov 1;63(11):1199-208.

    ContextThere is extensive evidence implicating dysfunctions in stress responses and adaptation to stress in the pathophysiological mechanism of major depressive disorder (MDD) in humans. Endogenous opioid neurotransmission activating mu-opioid receptors is involved in stress and emotion regulatory processes and has been further implicated in MDD.ObjectiveTo examine the involvement of mu-opioid neurotransmission in the regulation of affective states in volunteers with MDD and its relationship with clinical response to antidepressant treatment.DesignMeasures of mu-opioid receptor availability in vivo (binding potential [BP]) were obtained with positron emission tomography and the mu-opioid receptor selective radiotracer carbon 11-labeled carfentanil during a neutral state. Changes in BP during a sustained sadness challenge were obtained by comparing it with the neutral state, reflecting changes in endogenous opioid neurotransmission during the experience of that emotion.SettingClinics and neuroimaging facilities at a university medical center.ParticipantsFourteen healthy female volunteers and 14 individually matched patient volunteers diagnosed with MDD were recruited via advertisement and through outpatient clinics.InterventionsSustained neutral and sadness states, randomized and counterbalanced in order, elicited by the cued recall of an autobiographical event associated with that emotion. Following imaging procedures, patients underwent a 10-week course of treatment with 20 to 40 mg of fluoxetine hydrochloride.Main Outcome MeasuresChanges in mu-opioid receptor BP during neutral and sustained sadness states, negative and positive affect ratings, plasma cortisol and corticotropin levels, and clinical response to antidepressant administration.ResultsThe sustained sadness condition was associated with a statistically significant decrease in mu-opioid receptor BP in the left inferior temporal cortex of patients with MDD and correlated with negative affect ratings experienced during the condition. Conversely, a significant increase in mu-opioid receptor BP was observed in healthy control subjects in the rostral region of the anterior cingulate. In this region, a significant decrease in mu-opioid receptor BP during sadness was observed in patients with MDD who did not respond to antidepressant treatment. Comparisons between patients with MDD and controls showed significantly lower neutral-state mu-opioid receptor BP in patients with MDD in the posterior thalamus, correlating with corticotropin and cortisol plasma levels. Larger reductions in mu-opioid system BP during sadness were obtained in patients with MDD in the anterior insular cortex, anterior and posterior thalamus, ventral basal ganglia, amygdala, and periamygdalar cortex. The same challenge elicited larger increases in the BP measure in the control group in the anterior cingulate, ventral basal ganglia, hypothalamus, amygdala, and periamygdalar cortex.ConclusionsThe results demonstrate differences between women with MDD and control women in mu-opioid receptor availability during a neutral state, as well as opposite responses of this neurotransmitter system during the experimental induction of a sustained sadness state. These data demonstrate that endogenous opioid neurotransmission on mu-opioid receptors, a system implicated in stress responses and emotional regulation, is altered in patients diagnosed with MDD.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…