• Exp Brain Res · Dec 2014

    Corticospinal and intracortical excitability of the quadriceps in patients with knee osteoarthritis.

    • Andrew J Kittelson, Abbey C Thomas, Benzi M Kluger, and Jennifer E Stevens-Lapsley.
    • Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA, Andrew.Kittelson@ucdenver.edu.
    • Exp Brain Res. 2014 Dec 1;232(12):3991-9.

    AbstractDeficits in voluntary activation of the quadriceps muscle are characteristic of knee osteoarthritis (OA), contributing to the quadriceps weakness that is also a hallmark of the disease. The mechanisms underlying this central activation deficit (CAD) are unknown, although cortical mechanisms may be involved. Here, we utilize transcranial magnetic stimulation (TMS) to assess corticospinal and intracortical excitability in patients with knee OA and in a comparably aged group of healthy older adults, to quantify group differences, and to examine associations between TMS measures and pain, quadriceps strength, and CAD. Seventeen patients with knee OA and 20 healthy controls completed testing. Motor evoked potentials were measured at the quadriceps by superficial electromyographic recordings. Corticospinal excitability was assessed by measuring resting motor threshold (RMT) to TMS stimulation of the quadriceps representation at primary motor cortex, and intracortical excitability was assessed via paired-pulse paradigms for short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). No statistically significant differences between patients with knee OA and healthy controls were found for RMT, SICI or ICF measures (p > 0.05). For patients with knee OA, there were significant associations observed between pain and RMT, as well as between pain and ICF. No associations were observed between CAD and measures of corticospinal or intracortical excitability. These data suggest against direct involvement of corticospinal or intracortical pathways within primary motor cortex in the mechanisms of CAD. However, pain is implicated in the neural mechanisms of quadriceps motor control in patients with knee OA.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.