-
- Adam Hart, Edward J Harvey, Louis-Philippe Lefebvre, Francois Barthelat, Reza Rabiei, and Paul A Martineau.
- Division of Orthopedic Surgery, McGill University Health Centre, McGill University, Montreal, Canada. adam.hart@mail.mcgill.ca
- J Hand Surg Am. 2013 Sep 1;38(9):1728-34.
PurposeIn practice, the surgeon must rely on screw position (insertion depth) and tactile feedback from the screwdriver (insertion torque) to gauge compression. In this study, we identified the relationship between interfragmentary compression and these 2 factors.MethodsThe Acutrak Standard, Acutrak Mini, Synthes 3.0, and Herbert-Whipple implants were tested using a polyurethane foam scaphoid model. A specialized testing jig simultaneously measured compression force, insertion torque, and insertion depth at half-screw-turn intervals until failure occurred.ResultsThe peak compression occurs at an insertion depth of -3.1 mm, -2.8 mm, 0.9 mm, and 1.5 mm for the Acutrak Mini, Acutrak Standard, Herbert-Whipple, and Synthes screws respectively (insertion depth is positive when the screw is proud above the bone and negative when buried). The compression and insertion torque at a depth of -2 mm were found to be 113 ± 18 N and 0.348 ± 0.052 Nm for the Acutrak Standard, 104 ± 15 N and 0.175 ± 0.008 Nm for the Acutrak Mini, 78 ± 9 N and 0.245 ± 0.006 Nm for the Herbert-Whipple, and 67 ± 2N, 0.233 ± 0.010 Nm for the Synthes headless compression screws.ConclusionsAll 4 screws generated a sizable amount of compression (> 60 N) over a wide range of insertion depths. The compression at the commonly recommended insertion depth of -2 mm was not significantly different between screws; thus, implant selection should not be based on compression profile alone. Conically shaped screws (Acutrak) generated their peak compression when they were fully buried in the foam whereas the shanked screws (Synthes and Herbert-Whipple) reached peak compression before they were fully inserted. Because insertion torque correlated poorly with compression, surgeons should avoid using tactile judgment of torque as a proxy for compression.Clinical RelevanceKnowledge of the insertion profile may improve our understanding of the implants, provide a better basis for comparing screws, and enable the surgeon to optimize compression.Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.