• J. Mol. Cell. Cardiol. · Sep 2014

    High-mobility group box 1 (HMGB1) impaired cardiac excitation-contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca(2+) leak through TLR4-ROS signaling in cardiomyocytes.

    • Cuicui Zhang, Miaohua Mo, Wenwen Ding, Wenjuan Liu, Dewen Yan, Jianxin Deng, Xinping Luo, and Jie Liu.
    • Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research, Southern Medical University, Guangzhou, China.
    • J. Mol. Cell. Cardiol. 2014 Sep 1;74:260-73.

    AbstractHigh-mobility group box 1 (HMGB1) is a proinflammatory mediator playing an important role in the pathogenesis of cardiac dysfunction in many diseases. In this study, we explored the effects of HMGB1 on Ca(2+) handling and cellular contractility in cardiomyocytes to seek for the mechanisms underlying HMGB1-induced cardiac dysfunction. Our results show that HMGB1 increased the frequency of Ca(2+) sparks, reduced the sarcoplasmic reticulum (SR) Ca(2+) content, and decreased the amplitude of systolic Ca(2+) transient and myocyte contractility in dose-dependent manners in adult rat ventricular myocytes. Inhibiting high-frequent Ca(2+) sparks with tetracaine largely inhibited the alterations of SR load and Ca(2+) transient. Blocking Toll-like receptor 4 (TLR4) with TAK-242 or knockdown of TLR4 by RNA interference remarkably inhibited HMGB1 induced high-frequent Ca(2+) sparks and restored the SR Ca(2+) content. Concomitantly, the amplitude of systolic Ca(2+) transient and myocyte contractility had significantly increased. Furthermore, HMGB1 increased the level of intracellular reactive oxygen species (ROS) and consequently enhanced oxidative stress and CaMKII-activated phosphorylation (pSer2814) in ryanodine receptor 2 (RyR2). TAK-242 pretreatment significantly decreased intracellular ROS levels and oxidative stress and hyperphosphorylation in RyR2, similar to the effects of antioxidant MnTBAP. Consistently, MnTBAP normalized HMGB1-impaired Ca(2+) handling and myocyte contractility. Taken together, our findings suggest that HMGB1 enhances Ca(2+) spark-mediated SR Ca(2+) leak through TLR4-ROS signaling pathway, which causes partial depletion of SR Ca(2+) content and hence decreases systolic Ca(2+) transient and myocyte contractility. Prevention of SR Ca(2+) leak may be an effective therapeutic strategy for the treatment of cardiac dysfunction related to HMGB1 overproduction.Copyright © 2014 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.