-
Journal of neurotrauma · Jun 2007
Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury.
- Takayuki Kato, Noriyuki Nakayama, Yuto Yasokawa, Ayumi Okumura, Jun Shinoda, and Toru Iwama.
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan. nou-taka@a.email.ne.jp
- J. Neurotrauma. 2007 Jun 1;24(6):919-26.
AbstractThe aim of this study was to explore the regional cerebral glucose metabolism (rCM) in patients with chronic stage traumatic brain injury (TBI) compared with normal controls. We also investigated the relationship between regional cerebral glucose metabolism and cognitive function. We performed 2-[(18)F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) study using statistical parametric mapping (SPM) analysis in 36 diffuse axonal injury (DAI) patients (mean age +/- SD, 36.3 +/- 9.8 years). At 6 months or more after head injury, all patients underwent FDG-PET study and neuropsychological batteries to assess cognitive function. Thirty healthy, gender-matched control subjects who were comparable in age were also studied. Between the TBI patients and normal controls, group comparisons showed regional metabolic decreases in the bilateral frontal lobes, temporal lobes, thalamus, as well as the right cerebellum in the TBI group. Only full-scale Intelligence Quotient (IQ) (mean +/- SD, 78.5 +/- 11.9) correlated positively with rCM in the right cingulate gyrus and the bilateral medial frontal gyrus. In other examinations, the correlation was not provided. DAI may induce functional disconnection and decreased neuronal activity, and finally lead to diffuse glucose hypometabolism. Low full-scale IQ scores may be related to significantly different underlying cognitive impairment. In supporting cognitive function following TBI, which showed diffuse cerebral metabolic reduction compared with normal controls, medial prefrontal cortex and anterior cingulate cortex may be an important component.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.