• European urology · Dec 2011

    Novel prognostic markers in the serum of patients with castration-resistant prostate cancer derived from quantitative analysis of the pten conditional knockout mouse proteome.

    • Martin Kälin, Igor Cima, Ralph Schiess, Niklaus Fankhauser, Tom Powles, Peter Wild, Arnoud Templeton, Thomas Cerny, Ruedi Aebersold, Wilhelm Krek, and Silke Gillessen.
    • Department of Medical Oncology, Kantonsspital St. Gallen, 9007St. Gallen, Switzerland. martin.kaelin@kssg.ch
    • Eur. Urol. 2011 Dec 1;60(6):1235-43.

    BackgroundMetastatic castration-resistant prostate cancer (mCRPC) is associated with a poor outcome. Prognostic information is useful and aids treatment decisions. However, current nomograms based on clinical parameters alone have weak prognostic accuracy. Therefore, the identification of new prognostic serum biomarkers could be useful.ObjectivesTo assess if quantitative analysis of the phosphatase and tensin homolog (Pten) conditional knockout mouse proteome reveals significant prognostic biomarkers in mCRPC and to compare the accuracy of these biomarkers with known prognostic factors.Design, Setting, And ParticipantsFifty-seven patients with mCRPC were evaluated retrospectively. Prognostic factors used in clinical nomograms were assessed from the records. New candidate biomarkers in patients' sera were derived using a cancer genetics-guided model we recently described, screening the murine Pten-dependent glycoproteome.MeasurementsQuantification in patients' sera was performed by either mass spectrometry-based targeted proteomics or enzyme-linked immunosorbent assays. Prognostic biomarkers for survival were identified based on Kaplan-Meier models. In a second step, random forest analysis was performed to identify a prognostic signature combined from the pooled data of known predictors and newly identified biomarkers.Results And LimitationsWith univariate analysis, 13 new significant prognostic factors for survival in the sera of mCRPC patients were found with a Bonferroni-corrected level of significance <5%. Random forest analysis revealed a five-factor predictor (thrombospondin 1; C-reactive protein; poliovirus receptor-related 1; ephrin-A5; and membrane metallo-endopeptidase) with an accuracy of 96% and 94% for 12- and 24-mo survival, respectively. This means that, in our dataset, the error was reduced by 15% compared to using the Halabi et al. nomogram. The retrospective nature of the work and absence of a validating dataset is the major limitation of this work.ConclusionsAnalysis of the serum proteome in mCRPC patients based on our Pten conditional knockout model, combined with known prognostic factors, potentially improves accuracy of prognostic nomograms. These newly identified markers have to be validated in prospective studies.Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.