• Shock · Feb 2013

    Hydrogen sulfide differentially affects the hepatic vasculature in response to phenylephrine and endothelin 1 during endotoxemia.

    • Eric J Norris, Catherine R Culberson, Mark G Clemens, and Sebastian Larion.
    • Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA.
    • Shock. 2013 Feb 1;39(2):168-75.

    AbstractDespite being protective in many disease states, hydrogen sulfide (H(2)S) contributes to organ injury in sepsis. Like the other gasotransmitters, nitric oxide and carbon monoxide, H(2)S is a modulator of the microcirculation. Because microcirculatory dysfunction is a main cause of organ injury during sepsis, the present study was designed to test the effect of H(2)S on microvascular dysfunction in isolated perfused livers. In most microcirculatory beds, endotoxin activates the endothelium, resulting in hyporesponsiveness to catecholamines and a derangement in blood flow distribution. We demonstrate that H(2)S treatment attenuates the increase in portal pressure during infusion of the α1 adrenergic agonist, phenylephrine (PE) (P < 0.01). Hydrogen sulfide almost completely negated the increase in portal pressure in livers isolated from endotoxemic rats. Treatment with an inhibitor of endogenous H(2)S, DL-propargylglycine (PAG), reversed lipopolysaccharide-induced hyporesponsiveness to PE. Because hepatic microcirculatory dysfunction is associated with excessive sinusoidal vasoconstriction and not dilation, we investigated whether H(2)S affects endothelin 1 (ET-1)-induced vasoconstriction in isolated livers. Contrary to PE treatment, H(2)S did not affect the increase in portal pressure during infusion of ET-1, nor did it attenuate the hypersensitization of the liver to ET-1 during endotoxemia. Hepatic resistance in control rats was increased by PAG treatment during ET-1 infusion, but this increase was not exacerbated during endotoxemia. We monitored hepatic O(2) consumption to assess the effect of vascular changes on oxygen consumption following ET-1 treatment. Low-dose ET-1 infusion caused an increase in hepatic O(2)consumption, whereas low-dose ET-1 infusion decreased O(2) consumption in endotoxemic livers. Interestingly, whereas we observed no effect of PAG on the vascular response to ET-1 infusion during endotoxemia, PAG treatment did maintain O(2), suggesting a more complex effect of H(2)S inhibition. In summary, the discrepancies between the hepatic response to PE and ET-1 suggest that H(2)S differentially contributes to microcirculatory dysfunction in the systemic and hepatic microcirculations. We propose that this is due to H(2)S exerting a differential vasoactive function on presinusoidal and sinusoidal sites within the liver. Moreover, our findings suggest that H(2)S may contribute to the progression of sepsis by contributing to microvascular failure.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…