• Shock · Feb 2013

    Applying dynamic parameters to predict hemodynamic response to volume expansion in spontaneously breathing patients with septic shock.

    • Michael J Lanspa, Colin K Grissom, Eliotte L Hirshberg, Jason P Jones, and Samuel M Brown.
    • Division of Pulmonary and Critical Care Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA. michael.lanspa@imail.org
    • Shock. 2013 Feb 1; 39 (2): 155-60.

    AbstractVolume expansion is a mainstay of therapy in septic shock, although its effect is difficult to predict using conventional measurements. Dynamic parameters, which vary with respiratory changes, appear to predict hemodynamic response to fluid challenge in mechanically ventilated, paralyzed patients. Whether they predict response in patients who are free from mechanical ventilation is unknown. We hypothesized that dynamic parameters would be predictive in patients not receiving mechanical ventilation. This is a prospective, observational, pilot study. Patients with early septic shock and who were not receiving mechanical ventilation received 10-mL/kg volume expansion (VE) at their treating physician's discretion after initial resuscitation in the emergency department. We used transthoracic echocardiography to measure vena cava collapsibility index and aortic velocity variation before VE. We used a pulse contour analysis device to measure stroke volume variation (SVV). Cardiac index was measured immediately before and after VE using transthoracic echocardiography. Hemodynamic response was defined as an increase in cardiac index 15% or greater. Fourteen patients received VE, five of whom demonstrated a hemodynamic response. Vena cava collapsibility index and SVV were predictive (area under the curve = 0.83, 0.92, respectively). Optimal thresholds were calculated: vena cava collapsibility index, 15% or greater (positive predictive value, 62%; negative predictive value, 100%; P = 0.03); SVV, 17% or greater (positive predictive value 100%, negative predictive value 82%, P = 0.03). Aortic velocity variation was not predictive. Vena cava collapsibility index and SVV predict hemodynamic response to fluid challenge patients with septic shock who are not mechanically ventilated. Optimal thresholds differ from those described in mechanically ventilated patients.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.