• Life sciences · May 2006

    An antioxidant treatment potentially protects myocardial energy metabolism by regulating uncoupling protein 2 expression in a chronic beta-adrenergic stimulation rat model.

    • Makoto Ishizawa, Katsufumi Mizushige, Takahisa Noma, Tsunetatsu Namba, Peng Guo, Kazushi Murakami, Teppei Tsuji, Akira Miyatake, Koji Ohmori, and Masakazu Kohno.
    • Second Department of Internal Medicine, Kagawa University School of Medicine, Miki, Kita, Kagawa, 761-0793, Japan. mkto@med.kagawa-u.ac.jp
    • Life Sci. 2006 May 15;78(25):2974-82.

    AbstractExcessive beta-adrenergic stimulation causes cardiac toxicity, which also contributes to cardiac oxidative stress. Although uncoupling protein 2 (UCP2), a member of the mitochondrial inner membrane carrier family, can regulate energy efficiency and oxidative stress in mitochondria, little data exist regarding interactions between UCP2 expression and beta-adrenergic stimulation induced cardiac oxidative damage. We investigated whether chronic beta-adrenergic stimulation induces myocardial energy metabolism abnormality via oxidative stress, including any role of UCP2. We also examined whether 3-methyl-1-phenyl-2-pyrazolin-5-one (MIC-186; edaravone), a potent free radical scavenger, has cardioprotective effects against beta-adrenergic stimulation. Male Sprague-Dawley rats received isoproterenol (1.2 mg/kg/day) subcutaneously or/and edaravone (30 mg/kg/day) orally. Isoproterenol increased the heart/body weight ratio, accompanied by an increase in the level of myocardial thiobarbituric acid reactive substances (TBARS) and a decreased phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio. Isoproterenol also markedly increased expressions of UCP2 mRNA (1.74 fold vs. non-isoproterenol) and protein (1.93 fold vs. non-isoproterenol). Edaravone had no apparent effect in hypertrophic responses, but significantly prevented both increases in TBARS and decreases in the PCr/ATP ratio. Edaravone also prevented increases in UCP2 mRNA (0.76 fold vs. isoproterenol) and protein (0.62 fold vs. isoproterenol) expressions against isoproterenol administration. Our results suggest that chronic beta-adrenergic stimulation induces myocardial energy inefficiency via excessive oxidative stress. The antioxidant effect of edaravone has potential to improve energy metabolism abnormalities against beta-adrenergic stimulation. Adequate regulation of UCP2 expression through artificial reduction of oxidative stress may play an important role in protection of the myocardial energy metabolism.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.