• Eur. J. Neurosci. · May 2007

    Synaptic organization and input-specific short-term plasticity in anterior cingulate cortical neurons with intact thalamic inputs.

    • Chia-Ming Lee, Wei-Chih Chang, Kung-Bo Chang, and Bai-Chuang Shyu.
    • Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan, ROC.
    • Eur. J. Neurosci. 2007 May 1;25(9):2847-61.

    AbstractThe absence of a slice preparation with intact thalamocortical pathways has held back elucidation of the cellular and synaptic mechanisms by which thalamic signals are differentially transmitted to and processed in the anterior cingulate cortex (ACC). In this report we introduce an innovative mouse brain slice preparation in which it is possible to explore the electrophysiological properties of ACC neurons with intact long-distance inputs from medial thalamic (MT) nuclei by intracellular recordings; this MT-ACC neuronal pathway plays an integral role in information transmission. Biocytin-labeled fibers in a functional slice could be traced anterogradely or retrogradely from the MT via the reticular thalamic nuclei, striatum and corpus callosum to the cingulate cortical areas. Eighty-seven cells downstream of the thalamic projections in 49 slices were recorded intracellularly. Intracellular recordings in the ACC showed that thalamocingulate transmission involves both alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate and N-methyl-D-aspartate (NMDA) subtypes of glutamate receptors. Thalamus-evoked responses recorded extracellularly in the ACC were activated and progressed along a deep-superficial-deep trajectory loop across the ACC layers. We observed enhanced paired-pulse facilitation and tetanic potentiation of thalamocingulate synapses, suggestive of input-specific ACC plasticity and selective processing of information relayed by thalamocingulate pathways. Furthermore, we observed differential responses of ACC neurons to thalamic burst stimulation, which underscores the importance of MT afferents in relaying sensory information to the ACC. This new slice preparation enables the contribution of MT-evoked ACC synaptic transmission to short-term plasticity in the neuronal circuitry underlying sensory information processing to be examined in detail.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.