• Eur. J. Neurosci. · Sep 2007

    Randomized Controlled Trial Clinical Trial

    Brain imaging of analgesic and antihyperalgesic effects of cyclooxygenase inhibition in an experimental human pain model: a functional MRI study.

    • Christian Maihöfner, Ralf Ringler, Franz Herrndobler, and Wolfgang Koppert.
    • Department of Neurology, Schwabachanlage 6, D91054 Erlangen, University Hospital Erlangen, Germany. christian.maihoefner@uk-erlangen.de
    • Eur. J. Neurosci. 2007 Sep 1;26(5):1344-56.

    AbstractOne of the most distressing symptoms of many neuropathic pain syndromes is the enhanced pain sensation to tactile or thermal stimulation (hyperalgesia). In the present study we used functional magnetic resonance imaging (fMRI) and explored brain activation patterns during acute impact pain and mechanical hyperalgesia in the human ultraviolet (UV)-B model. To investigate pharmacological modulation, we examined potential differential fMRI correlates of analgesic and antihyperalgesic effects of two intravenous cyclooxygenase inhibitors, i.e. parecoxib and acetylsalicylic acid (ASA). Fourteen healthy volunteers participated in this double-blinded, randomized and placebo-controlled crossover study. Tactile stimuli and mechanical impact hyperalgesia were tested at the site of a UV-B irradiation and acute mechanical pain was tested at a site distant from the irradiated skin. These measurements were conducted before and 30 min after a 5-min intravenous infusion of either saline (placebo), parecoxib 40 mg or ASA 1000 mg. Acute mechanical pain and mechanical hyperalgesia led to widespread activations of brain areas known to comprise the human pain matrix. Analgesic effects were found in primary (S1) and secondary (S2) somatosensory cortices, parietal association cortex (PA), insula, anterior parts of the cingulate cortex and prefrontal cortices. These brain areas were also modulated under antihyperalgesic conditions. However, we observed a greater drug-induced modulation of mainly PA and inferior frontal cortex during mechanical hyperalgesia; during acute mechanical pain there was a greater modulation of mainly bilateral S2. Therefore, the results of the present study suggest that there is a difference in the brain areas modulated by analgesia and antihyperalgesia.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.