• Brain research · Mar 2009

    Delayed transplantation of human marrow stromal cell-seeded scaffolds increases transcallosal neural fiber length, angiogenesis, and hippocampal neuronal survival and improves functional outcome after traumatic brain injury in rats.

    • Ye Xiong, Changsheng Qu, Asim Mahmood, Zhongwu Liu, Ruizhuo Ning, Yi Li, David L Kaplan, Timothy Schallert, and Michael Chopp.
    • Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48202, USA.
    • Brain Res. 2009 Mar 31;1263:183-91.

    AbstractTraumatic brain injury (TBI) is a major cause of death and disability worldwide; however, no effective treatment has been clinically identified. Our recent studies show that the combination of collagen scaffolds with human bone morrow stromal cells (hMSCs) for treatment of TBI improves functional outcome and reduces the lesion volume when this combination was applied at day 4 after TBI in rats. The mechanisms underlying these benefits remain unclear. Whether further delayed treatment with this combination will provide benefits has not been investigated. In the present study, we investigated whether the delayed (7 days post injury) transplantation would have beneficial effects on functional and histological outcome and sought to elucidate underlying mechanisms of therapeutic action. Collagen scaffolds seeded with 3 x 10(6) hMSCs, scaffolds alone, 3 x 10(6) hMSCs alone, or saline were transplanted into the lesion cavity of the injured cortex 7 days after TBI. Sensorimotor function and spatial learning were measured. Corticocortical labeling with 1, 1''-dioleyl-3, 3, 3'', 3''-tetramethylindocarbocyanine methanesulfonate (DiI) was performed at day 36 after TBI. The rats were sacrificed 43 days after TBI, and the brain tissue was processed for DiI-labeling fiber and immunohistochemical analyses. The present data show that delayed transplantation of hMSCs or scaffolds seeded with hMSCs improved spatial learning and sensorimotor function, enhanced angiogenesis in the injured cortex and the ipsilateral hippocampus and increased DiI-labeled neural fiber length in the injured cortex. hMSC-seeded scaffolds may be a new and effective way to improve neurological function after TBI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.