• J Pain · Feb 2010

    Unilateral focal burn injury is followed by long-lasting bilateral allodynia and neuronal hyperexcitability in spinal cord dorsal horn.

    • Yu-Wen Chang, Andrew Tan, Carl Saab, and Stephen Waxman.
    • Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.
    • J Pain. 2010 Feb 1;11(2):119-30.

    UnlabelledPain after burn injury can be intense and long lasting. Treatment is often ineffective, and there is a need for increased knowledge of the underlying pain mechanisms. In the present study, we established a unilateral partial-thickness burn injury model, which produces ipsilateral mechanical allodynia soon after injury, followed by contralateral allodynia. Chronic bilateral allodynia lasts up to 8 weeks postinjury in this model. In addition to the change in pain behavior, electrophysiological analyses showed that dorsal horn neurons become hyperexcitable and display significantly increased evoked activity with enlarged receptive fields, initially on the side ipsilateral to the injury, and subsequently on both sides of the spinal cord. It is known that, following nerve injury, activation of p38 mitogen-activated protein kinase (MAPK) pathways within spinal microglia contributes to the pathogenesis of pain. In our burn injury model, rapid and prolonged activation of phospho-p38-expressing microglia occurs bilaterally in the spinal cord dorsal horn. Taken together, these data demonstrate that a unilateral peripheral burn injury can produce long-lasting allodynia that can spread to the contralateral limb, together with dorsal horn neuronal hyperexcitability and microglial activation on both ipsilateral and contralateral sides of the spinal cord. Our results suggest that central neuropathic mechanisms can contribute to pain after burn injury.PerspectiveMechanisms contributing to pain following burn injury are incompletely understood. In a novel animal model of burn injury, we have demonstrated hyperexcitability of second-order sensory neurons, activation of microglia, and chronic bilateral pain following the burn injury. This work identifies potential therapeutic targets to alleviate pain after burn injury.Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.