• J Trauma · Mar 2009

    Characterization of crash-induced thoracic loading resulting in pulmonary contusion.

    • F Scott Gayzik, R Shayn Martin, H Clay Gabler, J Jason Hoth, Stefan M Duma, J Wayne Meredith, and Joel D Stitzel.
    • Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA. sgayzik@wfubmc.edu
    • J Trauma. 2009 Mar 1;66(3):840-9.

    BackgroundPulmonary contusion (PC) is commonly sustained in motor vehicle crash. This study utilizes the Crash Injury Research and Engineering Network (CIREN) database and vehicle crash tests to characterize the occupants and loading characteristics associated with PC. A technique to match CIREN cases to vehicle crash tests is applied to quantify the thoracic loading associated with this injury.MethodsThe CIREN database and crash test data from the National Highway Traffic Safety Administration were used in this study. An analysis of CIREN data were conducted between three study cohorts: patients that sustained PC and any other chest injury (PC+ and chest+), patients with chest injury and an absence of PC (PC- and chest+), and a control group without chest injury and an absence of PC (PC- and chest-). Forty-one lateral impact crash tests were analyzed and thoracic loading data from onboard crash tests dummies were collected.ResultsThe incidence of PC in CIREN data were 21.7%. Crashes resulting in PC demonstrated significantly greater mortality (23.9%) and Injury Severity Score (33.1 +/- 15.7) than the control group. The portion of lateral impacts increased from 27% to 48% between the control group and PC+ and chest+ cohort, prompting the use of lateral impact crash tests for the case-matching portion of the study. Crash tests were analyzed in two configurations; vehicle-to-vehicle tests and vehicle-to-pole tests. The average maximum chest compression and deflection velocity from the dummy occupants were found to be 25.3% +/- 2.6% and 4.6 m/s +/- 0.42 m/s for the vehicle-to-pole tests and 23.0% +/- 4.8% and 3.9 m/s +/- 1.1 m/s for the vehicle-to-vehicle tests. Chest deflection versus time followed a roughly symmetric and sinusoidal profile. Sixteen CIREN cases were identified that matched the vehicle crash tests. Of the 16 matched cases, 12 (75%) sustained chest injuries, with half of these patients presenting with PC.ConclusionsQuantified loading at the chest wall indicative of PC and chest injury in motor vehicle crash is valuable boundary condition data for bench-top studies or computer simulations focused on this injury. In addition, because PC often exhibits a delayed onset, knowing the population and crash modes highly associated with this injury may promote earlier detection and improved management of this injury.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.