• Neurocritical care · Oct 2012

    Comparative Study

    Effects of high-frequency oscillatory ventilation on systemic and cerebral hemodynamics and tissue oxygenation: an experimental study in pigs.

    • Jan Florian Heuer, Philip Sauter, Jürgen Barwing, Peter Herrmann, Thomas A Crozier, Annalen Bleckmann, Tim Beißbarth, Onnen Moerer, and Michael Quintel.
    • Department of Anaesthesiology, Emergency-and Intensive Care Medicine, University of Göttingen Medical School, Göttingen, Germany. jheuer@med.uni-goettingen.de
    • Neurocrit Care. 2012 Oct 1;17(2):281-92.

    BackgroundIn this study, we compare the effects of high frequency oscillatory ventilation (HFOV) with those of lung-protective volume-controlled ventilation (VCV) on cerebral perfusion, tissue oxygenation, and cardiac function with and without acute intracranial hypertension (AICH).MethodsEight pigs with healthy lungs were studied during VCV with low tidal volume (V(T): 6 ml kg(-1)) at four PEEP levels (5, 10, 15, 20 cm H(2)O) followed by HFOV at corresponding transpulmonary pressures, first with normal ICP and then with AICH. Systemic and pulmonary hemodynamics, cardiac function, cerebral perfusion pressure (CPP), cerebral blood flow (CBF), cerebral tissue oxygenation, and blood gases were measured after 10 min at each level. Transpulmonary pressures (TPP) were calculated at each PEEP level. The measurements were repeated with HFOV using continuous distending pressures (CDP) set at TPP plus 5 cm H(2)O for the corresponding PEEP level. Both measurement series were repeated after intracranial pressure (ICP) had been raised to 30-40 cm H(2)O with an intracranial balloon catheter.ResultsCardiac output, stroke volume, MAP, CPP, and CBF were significantly higher during HFOV at normal ICP. Systemic and cerebral hemodynamics was significantly altered by AICH, but there were no differences attributable to the ventilatory mode.ConclusionHFOV is associated with less hemodynamic compromise than VCV, even when using small tidal volumes and low mean airway pressures. It does not impair cerebral perfusion or tissue oxygenation in animals with AICH, and could, therefore, be a useful ventilatory strategy to prevent lung failure in patients with traumatic brain injury.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.