-
- G J Braathen.
- Head and Neck Research Group, Research Centre, Akershus University Hospital, Lørenskog, Norway. g.j.braathen@medisin.uio.no
- Acta Neurol. Scand., Suppl.c. 2012 Jan 1(193):iv-22.
BackgroundCharcot-Marie-Tooth disease (CMT) is the most common inherited disorder of the peripheral nervous system. The frequency of different CMT genotypes has been estimated in clinic populations, but prevalence data from the general population is lacking. Point mutations in the mitofusin 2 (MFN2) gene has been identified exclusively in Charcot-Marie-Tooth disease type 2 (CMT2), and in a single family with intermediate CMT. MFN2 point mutations are probably the most common cause of CMT2. The CMT phenotype caused by mutation in the myelin protein zero (MPZ) gene varies considerably, from early onset and severe forms to late onset and milder forms. The mechanism is not well understood. The myelin protein zero (P(0) ) mediates adhesion in the spiral wraps of the Schwann cell's myelin sheath. X-linked Charcot-Marie Tooth disease (CMTX) is caused by mutations in the connexin32 (cx32) gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions.AimsEstimate prevalence of CMT. Estimate frequency of Peripheral Myelin Protein 22 (PMP22) duplication and point mutations, insertions and deletions in Cx32, Early growth response 2 (EGR2), MFN2, MPZ, PMP22 and Small integral membrane protein of lysosome/late endosome (SIMPLE) genes. Description of novel mutations in Cx32, MFN2 and MPZ. Description of de novo mutations in MFN2.Material And MethodsOur population based genetic epidemiological survey included persons with CMT residing in eastern Akershus County, Norway. The participants were interviewed and examined by one geneticist/neurologist, and classified clinically, neurophysiologically and genetically. Two-hundred and thirty-two consecutive unselected and unrelated CMT families with available DNA from all regions in Norway were included in the MFN2 study. We screened for point mutations in the MFN2 gene. We describe four novel mutations, two in the connexin32 gene and two in the MPZ gene.ResultsA total of 245 affected from 116 CMT families from the general population of eastern Akershus county were included in the genetic epidemiological survey. In the general population 1 per 1214 persons (95% CI 1062-1366) has CMT. Charcot-Marie-Tooth disease type 1 (CMT1), CMT2 and intermediate CMT were found in 48.2%, 49.4% and 2.4% of the families, respectively. A mutation in the investigated genes was found in 27.2% of the CMT families and in 28.6% of the affected. The prevalence of the PMP22 duplication and mutations in the Cx32, MPZ and MFN2 genes was found in 13.6%, 6.2%, 1.2%, 6.2% of the families, and in 19.6%, 4.8%, 1.1%, 3.2% of the affected, respectively. None of the families had point mutations, insertions or deletions in the EGR2, PMP22 or SIMPLE genes. Four known and three novel mitofusin 2 (MFN2) point mutations in 8 unrelated Norwegian CMT families were identified. The novel point mutations were not found in 100 healthy controls. This corresponds to 3.4% (8/232) of CMT families having point mutations in MFN2. The phenotypes were compatible with CMT1 in two families, CMT2 in four families, intermediate CMT in one family and distal hereditary motor neuronopathy (dHMN) in one family. A point mutation in the MFN2 gene was found in 2.3% of CMT1, 5.5% of CMT2, 12.5% of intermediate CMT and 6.7% of dHMN families. Two novel missense mutations in the MPZ gene were identified. Family 1 had a c.368G>A (Gly123Asp) transition while family 2 and 3 had a c.103G>A (Asp35Asn) transition. The affected in family 1 had early onset and severe symptoms compatible with Dejerine-Sottas syndrome (DSS), while affected in family 2 and 3 had late onset, milder symptoms and axonal neuropathy compatible with CMT2. Two novel connexin32 mutations that cause early onset X-linked CMT were identified. Family 1 had a deletion c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247 while family 2 had a c.536G>A (Cys179Tyr) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade and the nerve conduction velocities were in the intermediate range.DiscussionCharcot-Marie-Tooth disease is the most common inherited neuropathy. At present 47 hereditary neuropathy genes are known, and an examination of all known genes would probably only identify mutations in approximately 50% of those with CMT. Thus, it is likely that at least 30-50 CMT genes are yet to be identified. The identified known and novel point mutations in the MFN2 gene expand the clinical spectrum from CMT2 and intermediate CMT to also include possibly CMT1 and the dHMN phenotypes. Thus, genetic analyses of the MFN2 gene should not be restricted to persons with CMT2. The phenotypic variation caused by different missense mutations in the MPZ gene is likely caused by different conformational changes of the MPZ protein which affects the functional tetramers. Severe changes of the MPZ protein cause dysfunctional tetramers and predominantly uncompacted myelin, i.e. the severe phenotypes congenital hypomyelinating neuropathy and DSS, while milder changes cause the phenotypes CMT1 and CMT2. The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode.ConclusionCharcot-Marie-Tooth disease is the most common inherited disorder of the peripheral nervous system with an estimated prevalence of 1 in 1214. CMT1 and CMT2 are equally frequent in the general population. The prevalence of PMP22 duplication and of mutations in Cx32, MPZ and MFN2 is 19.6%, 4.8%, 1.1% and 3.2%, respectively. The ratio of probable de novo mutations in CMT families was estimated to be 22.7%. Genotype- phenotype correlations for seven novel mutations in the genes Cx32 (2), MFN2 (3) and MPZ (2) are described. Two novel phenotypes were ascribed to the MFN2 gene, however further studies are needed to confirm that MFN2 mutations can cause CMT1 and dHMN.© 2012 John Wiley & Sons A/S.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.