• Anesthesiology · Sep 2011

    Effects of glycemic regulation on chronic postischemia pain.

    • Marie-Christine Ross-Huot, Thomas Schricker, and Cho Min Gi.
    • Department of Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada.
    • Anesthesiology. 2011 Sep 1;115(3):614-25.

    BackgroundIschemia-reperfusion (I/R) injuries consist of enhanced oxidative and inflammatory responses along with microvascular dysfunction after prolonged ischemia and reperfusion. Because I/R injuries induce chronic postischemia pain (CPIP) in laboratory animals, it is possible that surgical procedures using prolonged ischemia may result in chronic postoperative pain. Glycemic modulation during ischemia and reperfusion could affect pain after I/R injury because glucose triggers oxidative, inflammatory, and thrombotic reactions, whereas insulin has antioxidative, antiinflammatory, and vasodilatory properties.MethodsOne hundred ten rats underwent a 3-h period of ischemia followed by reperfusion to produce CPIP. Rats with CPIP had previously been divided into six groups with differing glycemic modulation paradigms: normal feeding; fasting; fasting with normal saline administration; fasting with dextrose administration; normal feeding with insulin administration; and normal feeding with insulin and dextrose administration. Blood glucose concentration was assessed during I/R in these separate groups of rats, and these rats were tested for mechanical and cold allodynia over the 21 days afterward (on days 2, 5, 7, 9, 12, and 21 after I/R injury).ResultsI/R injury in rats with normoglycemia or relative hyperglycemia (normal feeding and fasting with dextrose administration groups) led to significant mechanical and cold allodynia; conversely, relative hypoglycemia associated with insulin treatment or fasting (fasting, fasting with normal saline administration, and normal feeding with insulin administration groups) reduced allodynia induced by I/R injury. Importantly, insulin treatment did not reduce allodynia when administered to fed rats given dextrose (normal feeding with dextrose and insulin administration group).ConclusionStudy results suggest that glucose levels at the time of I/R injury significantly modulate postinjury pain thresholds in rats with CPIP. Strict glycemic control during I/R injury significantly reduces CPIP and, conversely, hyperglycemia significantly enhances it, which could have potential clinical applications especially in the surgical field.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…