• Exp Brain Res · Sep 2011

    Comparative Study

    Greater amount of visual information exacerbates force control in older adults during constant isometric contractions.

    • Deanna M Kennedy and Evangelos A Christou.
    • Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
    • Exp Brain Res. 2011 Sep 1;213(4):351-61.

    AbstractThe purpose of this study was to compare control of force and modulation of agonist muscle activity of young and older adults when the amount of visual feedback was varied at two different force levels. Ten young adults (25 years ± 4 years, 5 men and 5 women) and ten older adults (71 years ± 5 years, 4 men and 6 women) were instructed to accurately match a constant target force at 2 and 30% of their maximal isometric force with abduction of the index finger. Each trial lasted 35 s, and the amount of visual feedback was varied by changing the visual angle at 0.05, 0.5, and 1.5°. Each subject performed three trials for each visual angle condition. Force variability was quantified as the standard deviation and coefficient of variation (CV) of force. Modulation of the agonist muscle activity was quantified as the normalized power spectrum density of the EMG signal recorded from two pairs of bipolar electrodes placed on the first dorsal interosseus muscle. The frequency bands of interest were between 5 and 100 Hz. There were significant age-associated differences in force control with changes in the amount of visual feedback. The CV of force did not change with visual angle for young adults, whereas it increased for older adults. Although older adults exhibited similar CV of force to young adults at 0.05° (5.95 ± 0.67 vs. 5.47 ± 0.5), older adults exhibited greater CV of force than young adults at 0.5° (8.49 ± 1.34 vs. 5.05 ± 0.5) and 1.5° (8.23 ± 1.12 vs. 5.49 ± 0.6). In addition, there were age-associated differences in the modulation of the agonist muscle activity. Young adults increased normalized power in the EMG signal from 13 to 60 Hz with an increase in visual angle, whereas older adults did not. These findings suggest that greater amount of visual information may be detrimental to the control of a constant isometric contraction in older adults, and this impairment may be due to their inability to effectively modulate the motor neuron pool of the agonist muscle.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.