• Neurocritical care · Feb 2014

    Continuous Measurement of the Cumulative Amplitude and Duration of Hyperglycemia Best Predicts Outcome After Traumatic Brain Injury.

    • Qiang Yuan, Hua Liu, Yang Xu, Xing Wu, Yirui Sun, and Jin Hu.
    • Department of Neurosurgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
    • Neurocrit Care. 2014 Feb 1;20(1):69-76.

    BackgroundThis study aimed to assess the accuracy and utility of high-resolution continuous glucose recording in patients with traumatic brain injury (TBI) and to establish whether a relationship exists between the cumulative amplitude and duration of hyperglycemia and outcome after TBI.MethodsGlucose data for 56 TBI patients were collected continuously at 5-min intervals. The degree and duration of hyperglycemia above treatment thresholds were calculated as "glucose times time dose" (GTD; mg/dL d) using continuous recordings (GTD) for early stage (first 3 days). Long-term neurological functional outcome was assessed using the extended Glasgow Outcome Scale (GOSE). Receiver operating characteristic (ROC) curves were constructed to determine the predictive values of GTD, percentage readings, mean, and range of glucose for in-hospital mortality and GOSE.ResultsAll measurements of GTD were statistically significantly higher in the group that died. GTD of glucose >150 and glucose >180 had a high-predictive power for in-hospital mortality (areas under the ROC curve [AUC] = 0.917; 95 % CI, 0.837-0.998 and 0.876; 95 % CI, 0.784-0.967, respectively) and demonstrated significantly higher predictive power for mortality when compared with %reading >150 and %reading >180, respectively (p < 0.05). GTD of glucose >150 also had a significantly higher predictive power for mortality than mean glucose and range of glucose. GTD of glucose >150 and glucose >180 also had a high-predictive power for poor outcome (areas under the ROC curve [AUC] = 0.913; 95 % CI, 0.843-0.983 and 0.858; 95 % CI, 0.760-0.956, respectively).ConclusionsContinuous collection of glucose recordings is more reliable and accurate than routine discontinuous recordings. Assessing both the duration and the amplitude of the episodes using continuous collection of glucose data helps in better predicting outcomes than the total duration of episodes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…