-
- Tomoyuki Kawamata, Keiichi Omote, Masaki Toriyabe, Mikito Kawamata, and Akiyoshi Namiki.
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan. kawamata@sapmed.ac.jp
- Anesthesiology. 2002 May 1;96(5):1175-82.
BackgroundIt has been generally considered that supraspinal morphine activates the serotonergic descending inhibitory system and releases serotonin (5-hydroxytryptamine [5-HT]) in the spinal cord, producing antinociception through activation of 5-HT receptors. The involvement of a spinal gamma-aminobutyric acid-mediated (GABAergic) system is also suggested in supraspinal morphine antinociception. It has been reported that spinal GABAergic system contributes to 5-HT3 receptor-mediated antinociception. In this study, the authors investigated the contribution of spinal 5-HT3 receptor and the GABAergic system in the intracerebroventricular morphine-induced antinociception.MethodsMale Sprague-Dawley rats were used. Using the spinal microdialysis method, concentrations of 5-HT and GABA were measured after intracerebroventricular morphine administration. The effect of intracerebroventricular naloxone or spinal perfusion of a selective 5-HT3 receptor antagonist 3-tropanyl-indole-3-carboxylate methiodide on the spinal release of GABA after intracerebroventricular morphine administration was also examined. In the behavioral study, involvement of 5-HT3 receptors or GABAA receptors in the intracerebroventricular morphine-induced antinociceptive effect was investigated using the tail-flick test.ResultsIntracerebroventricular morphine (40 nmol) significantly increased spinal GABA and 5-HT release. Evoked spinal GABA release was reversed by intracerebroventricular naloxone (40 nmol) or spinal perfusion of 3-tropanyl-indole-3-carboxylate methiodide (1 mm). In the behavioral study, intracerebroventricular morphine produced significant antinociception. Intrathecal administration of either GABAA receptor antagonist bicuculine or 3-tropanyl-indole-3-carboxylate methiodide but not vehicle reversed the morphine-induced antinociceptive effect.ConclusionIntracerebroventricular morphine evokes spinal GABA release via the activation of 5-HT3 receptors in the spinal cord, resulting in antinociceptive effect.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.