• Respir Care Clin N Am · Sep 2003

    Review

    Respiratory system mechanics in acute respiratory distress syndrome.

    • Richard H Kallet and Jeffrey A Katz.
    • Critical Care Division, Department of Anesthesia, University of California San Francisco at San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA 94110, USA. richkallet@earthlink.net
    • Respir Care Clin N Am. 2003 Sep 1;9(3):297-319.

    AbstractRespiratory mechanics research is important to the advancement of ARDS management. Twenty-eight years ago, research on the effects of PEEP and VT indicated that the lungs of ARDS patients did not behave in a manner consistent with homogenously distributed lung injury. Both Suter and colleagues] and Katz and colleagues reported that oxygenation continued to improve as PEEP increased (suggesting lung recruitment), even though static Crs decreased and dead-space ventilation increased (suggesting concurrent lung overdistension). This research strongly suggested that without VT reduction, the favorable effects of PEEP on lung recruitment are offset by lung overdistension at end-inspiration. The implications of these studies were not fully appreciated at that time, in part because the concept of ventilator-associated lung injury was in its nascent state. Ten years later. Gattinoni and colleagues compared measurements of static pressure-volume curves with FRC and CT scans of the chest in ARDS. They found that although PEEP recruits collapsed (primarily dorsal) lung segments, it simultaneously causes overdistension of non-dependent, inflated lung regions. Furthermore, the specific compliance of the aerated, residually healthy lung tissue is essentially normal. The main implication of these findings is that traditional mechanical ventilation practice was injecting excessive volumes of gas into functionally small lungs. Therefore, the emblematic low static Crs measured in ARDS reflects not only surface tension phenomena and recruitment of collapsed airspaces but also overdistension of the remaining healthy lung. The studies reviewed in this article support the concept that lung injury in ARDS is heterogeneously distributed, with resulting disparate mechanical stresses, and indicate the additional complexity from alterations in chest wall mechanics. Most of these studies, however, were published before lung-protective ventilation. Therefore, further studies are needed to refine the understanding of the mechanical effects of lung-protective ventilation. Although low-VT ventilation is becoming a standard of care for ARDS patients, many issues remain unresolved; among them are the role of PEEP and recruitment maneuvers in either preventing or promoting lung injury and the effects of respiratory rate and graded VT reduction on mechanical stress in the lungs. The authors believe that advances in mechanical ventilation that may further improve patient outcomes are likely to come from more sophisticated monitoring capabilities (ie, the ability to measure P1 or perhaps Cslice) than from the creation of new modes of ventilatory support.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…