-
- Perenlei Enkhbaatar, Collette Joncam, Lillian Traber, Yoshimitsu Nakano, Jianpu Wang, Matthias Lange, Rhykka Connelly, Gabriela Kulp, Fiona Saunders, Ruksana Huda, Robert Cox, Frank Schmalstieg, David Herndon, and Daniel Traber.
- Department of Anesthesiology, University of Texas Medical Branch, and Shriners Hospital for Children, Galveston, TX 77551, USA. peenkhba@utmb.edu
- Shock. 2008 May 1;29(5):642-9.
AbstractMethicillin-resistant Staphylococcus aureus (MRSA)-related pneumonia and/or sepsis are a frequent serious menace. The aim of the study was to establish a standardized and reproducible model of MRSA-induced septic pneumonia to evaluate new therapies. Sheep were operatively prepared for chronic study. After 5 days' recovery, tracheostomy was performed under anesthesia, and smoke injury was induced by inhalation of cotton smoke (48 breaths, <40 degrees C). Methicillin-resistant S. aureus (AW6) (approximately 2.5x10(11) colony-forming units) was instilled into the airway by a bronchoscope. After the injury, animals were awakened and maintained on mechanical ventilation by 100% oxygen for first 3 h, and thereafter, oxygen concentration was adjusted according to blood gases. The sheep were resuscitated by lactated Ringer solution with an initial rate of 2 mL kg(-1) h(-1) that was further adjusted according to hematocrit. Study groups include (1) sham (noninjured, nontreated; n=6), (2) S+MRSA (exposed to smoke inhalation and MRSA, nontreated; n=6), and (3) smoke (exposed to smoke inhalation alone; n=6). Injured (S+MRSA) animals showed the signs of severe sepsis-related multiple organ failure 3 h after insult. Cardiovascular morbidity was evidenced by severe hypotension, with increased heart rate, cardiac output, left atrial pressure and severely decreased systemic vascular resistance index, and left ventricle stroke work index. Pulmonary dysfunction was characterized by deteriorated gas exchange (PaO2/FIO2 and pulmonary shunt) and increased ventilatory pressures. The S+MRSA group showed significantly greater lung tissue water content, myeloperoxidase activity, and cytokine production compared with uninjured sham animals. Microvascular hyperpermeability was evidenced by marked fluid retention (fluid net balance), decreased plasma protein with decreased plasma oncotic pressure, and increased pulmonary microvascular pressure. All these changes were accompanied by 6- to 7-fold increase in plasma nitrite/nitrate and increased production of reactive nitrogen species in lung. The smoke inhalation alone had a little or no effect on these variables. This model closely mimics hyperdynamic human sepsis. The excessive production of NO may be extensively involved in the pathogenic process.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.