• Stroke · Aug 2014

    Ischemic postconditioning relieves cerebral ischemia and reperfusion injury through activating T-LAK cell-originated protein kinase/protein kinase B pathway in rats.

    • Haiping Zhao, Rongliang Wang, Zhen Tao, Li Gao, Feng Yan, Zhi Gao, Xiangrong Liu, Xunming Ji, and Yumin Luo.
    • From the Cerebrovascular Diseases Research Institute (H.Z., R.W., Z.T., F.Y., Z.G., X.L., X.J., Y.L.) and Department of Neurology (L.G.), Xuanwu Hospital of Capital Medical University, Beijing, China; Cerebralvascular Diseases Research Laboratory, Beijing Geriatric Medical Research Center, Beijing, China (H.Z., R.W., Z.T., F.Y., Z.G., X.L., X.J., Y.L.); and Key Laboratory of Neurodegenerative Diseases of Ministry of Education and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China (H.Z., R.W., Z.T., F.Y., Z.G., X.L., X.J., Y.L.).
    • Stroke. 2014 Aug 1;45(8):2417-24.

    Background And PurposeIschemic postconditioning (IPostC) protects against ischemic brain injury. To date, no study has examined the role of T-LAK-cell-originated protein kinase (TOPK) in IPostC-afforded neuroprotection. We explored the molecular mechanism related with TOPK in antioxidant effect of IPostC against ischemia/reperfusion.MethodsFocal ischemia was induced in rats by transient middle cerebral artery occlusion. Reactive oxygen species production in the peri-infarct cortex was detected using dihydroethidium. Malondialdehyde, as a marker of lipid peroxidation, and 3-nitrotyrosine, as a marker of protein oxidation, were detected by ELISA. The expression or location of antioxidant proteins and signal molecules TOPK, phosphatase, and tensin homolog, and Akt was analyzed by Western blotting and immunofluorescence.ResultsOur results revealed that IPostC relieved transient middle cerebral artery occlusion-induced oxidative damage by reducing reactive oxygen species, malondialdehyde, and 3-nitrotyrosine accumulation in the peri-infarct cortex and raised levels of antioxidants perioxiredoxin-1, peroxiredoxin-2, and thioredoxin-1. In addition, IPostC increased p-AKT and p-TOPK levels, which colocalized in neural cells. In vitro TOPK knockdown by small interfering RNA decreased the levels of antioxidants peroxiredoxin-1, thioredoxin, and manganese superoxide dismutase activity in PC12 cells. In vivo intracerebroventricular injection of TOPK small interfering RNA reversed IPostC-induced neuroprotection by increasing infarct volume and nitric oxide content and reducing manganese superoxide dismutase activity. Moreover, IPostC-evoked Akt activation was blocked by TOPK small interfering RNA in vivo, but the decreased phosphorylated phosphatase and tensin homolog level in ischemia/reperfusion was not influenced by IPostC or by TOPK small interfering RNA treatment.ConclusionsOur results suggest that the antioxidative effects of TOPK/Akt might contribute to the neuroprotection of IPostC treatment against transient middle cerebral artery occlusion.© 2014 American Heart Association, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…