• Am. J. Physiol. Lung Cell Mol. Physiol. · Nov 2011

    Rho-kinase inhibition alleviates pulmonary hypertension in transgenic mice expressing a dominant-negative type II bone morphogenetic protein receptor gene.

    • Tadashi Yasuda, Yuji Tada, Nobuhiro Tanabe, Koichiro Tatsumi, and James West.
    • Dept. of Respirology (B2 Graduate School of Medicine, Chiba Univ., 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. ytada25@yahoo.co.jp
    • Am. J. Physiol. Lung Cell Mol. Physiol. 2011 Nov 1;301(5):L667-74.

    AbstractPulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a sustained elevation in the pulmonary artery pressure and subsequent right heart failure. The activation of Rho/Rho-kinase activity and the beneficial effect of Rho-kinase inhibition have been demonstrated in several experimental models of pulmonary hypertension. However, it remains unclear whether Rho-kinase inhibitors can also be used against pulmonary hypertension associated with mutations in the type II bone morphogenetic protein receptor (BMPRII) gene. Transgenic mice expressing a dominant-negative BMPRII gene (with an arginine to termination mutation at amino acid 899) in smooth muscle by a tetracycline-gene switch system (SM22-tet-BMPR2(R899X) mice) were examined. They developed an elevated right ventricular systolic pressure (RVSP), right ventricular (RV) hypertrophy, muscularization of small pulmonary arteries, and an associated disturbed blood flow in their lungs. The Rho/Rho-kinase activity and Smad activity were determined by a Western blot analysis by detecting GTP-RhoA and the phosphorylation of myosin phosphatase target subunit 1, Smad1, and Smad2. In the lungs of SM22-tet-BMPR2(R899X) mice, the Rho/Rho-kinase activity was elevated significantly, whereas the Smad activity was almost unchanged. Fasudil, a Rho-kinase inhibitor, significantly decreased RVSP, alleviated RV hypertrophy and muscularization of small pulmonary arteries, and improved blood flow in SM22-tet-BMPR2(R899X) mice, although it did not alter Smad signaling. Our study demonstrates that Rho/Rho-kinase signaling is activated via a Smad-independent pathway in an animal model of pulmonary hypertension with a BMPRII mutation in the cytoplasmic tail domain. Rho-kinase inhibition is therefore a possible therapeutic approach for the treatment of PAH associated with genetic mutation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…