• Verh. K. Acad. Geneeskd. Belg. · Jan 2010

    Review

    Endocrine and metabolic disturbances in critical illness: relation to mechanisms of organ dysfunction and adverse outcome.

    • L Langouche, D Mesotten, and I Vanhorebeek.
    • Division and Laboratory of Intensive Care Medicine, Department of Acute Medical Sciences, Faculty of Medicine, Katholieke Universiteit Leuven, O&N1 Herestraat 49 bus 503 - B-3000 Leuven.
    • Verh. K. Acad. Geneeskd. Belg. 2010 Jan 1;72(3-4):149-63.

    AbstractCritically ill patients face a high risk of death, which is mostly due to non-resolving multiple organ failure. The plethora of endocrine and metabolic disturbances that hallmark critical illness may play a key role. The major part of our research performed during the period 2004-2009 focused on the disturbed glucose metabolism that commonly develops during critical illness. The onset of this research interest was the landmark randomized clinical study on strict blood glucose control (80-110 mg/ dl) with intensive insulin therapy performed by Prof. Van den Berghe and our clinical team members. This study, published in 2001 in the New England Journal of Medicine, showed reduced morbidity and improved survival with intensive insulin therapy versus toleration of hyperglycemia up to 215 mg/dl. This review summarizes our findings in both patients and animal models on mechanisms contributing to the clinical benefits of strict blood glucose control. Intensive insulin therapy appeared to lower blood glucose levels by ameliorating insulin sensitivity and stimulation of glucose uptake in skeletal muscle, whereas hepatic insulin resistance was not affected. The therapy also improved the lipid profile and the immune response and attenuated inflammation. Maintenance of strict normoglycemia appeared essentially most important, rather than elevating insulin levels. Avoiding hyperglycemia protected the endothelium and the mitochondria. In our animal model, nutritional interventions counteracted the hypercatabolic state of critical illness and insulin improved myocardial contractility, but only when normoglycemia was maintained. Interestingly, we identified the adipose tissue as a functional storage depot for toxic metabolites during critical illness.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.