• Med Eng Phys · May 2014

    Review

    Continuous time-domain monitoring of cerebral autoregulation in neurocritical care.

    • Christian Zweifel, Celeste Dias, Peter Smielewski, and Marek Czosnyka.
    • Academic Neurosurgical Unit, University of Cambridge Department of Clinical Neurosciences, Cambridge, United Kingdom; Department of Neurosurgery, University Hospital of Basel, Basel, Switzerland. Electronic address: zweifelch@gmx.ch.
    • Med Eng Phys. 2014 May 1;36(5):638-45.

    AbstractIntegration of various brain signals can be used to determine cerebral autoregulation in neurocritical care patients to guide clinical management and to predict outcome. In this review, we will discuss current methodology of multimodal brain monitoring focusing on secondary 'reactivity indices' derived from various brain signals which are based on a 'moving correlation coefficient'. This algorithm was developed in order to analyze in a time dependent manner the degree of correlation between two factors within a time series where the number of paired observations is large. Of the various primary neuromonitoring sources which can be used to calculate reactivity indices, we will focus in this review on indices based on transcranial Doppler (TCD), intracranial pressure (ICP), brain tissue oxygenation (PbtO2) and near infrared spectroscopy (NIRS). Furthermore, we will demonstrate how reactivity indices can show transient changes of cerebral autoregulation and can be used to optimize management of arterial blood pressure (ABP) and cerebral perfusion pressure (CPP).Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.