• Blood Coagul. Fibrinolysis · Apr 2015

    Experimental model of hyperfibrinolysis designed for rotational thromboelastometry in children with congenital heart disease.

    • David Faraoni, Laurence Rozen, Ariane Willems, Cristel Sanchez Torres, Luis M Pereira, Anne Demulder, and Philippe Van der Linden.
    • aDepartment of Anesthesiology, Queen Fabiola Children's University Hospital, Brugmann University Hospital, Free University of Brussels, Brussels, Belgium bDepartment of Anesthesia, Peri-operative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA cDepartment of Hematology and Hemostasis, Queen Fabiola Children's University Hospital, Brugmann University Hospital, Free University of Brussels dDepartment of Pediatric Intensive Care, Queen Fabiola Children's University Hospital, Free University of Brussels, Brussels, Belgium.
    • Blood Coagul. Fibrinolysis. 2015 Apr 1; 26 (3): 290-7.

    AbstractWe assessed an in-vitro model of hyperfibrinolysis using rotational thromboelastometry (ROTEM) by the addition of increasing concentrations of tissue-type plasminogen activator (t-PA) on whole blood obtained from children undergoing cardiac surgery. We assessed the relevance of this model by repeating the tests in the same population after tranexamic acid (TXA) infusion. In addition, we determined the sensitivity and specificity of ROTEM parameters to detect the different degrees of fibrinolysis. Blood samples obtained from 20 children were analyzed at two predefined timepoints: after induction of anesthesia, before TXA (baseline), and at the end of surgery during TXA infusion (end surgery). At baseline, an extrinsic activation with tissue factor (EXTEM) test was performed without and with increasing concentration of t-PA (102, 255, 512, 1024, 1535, and 2539 units t-PA/ml). At the end of surgery, a second EXTEM test was performed without and with two different t-PA concentrations (1535 and 2539 units t-PA/ml). At baseline, increasing t-PA concentrations in the EXTEM test induced a gradual increase of hyperfibrinolysis characterized by a reduction in clot firmness and stability parameters. In the presence of TXA, t-PA-induced hyperfibrinolysis was completely abolished. Lysis-onset time (LOT) and degree of fibrinolysis measured at 30 min (LI30) best assessed the degree of fibrinolysis. This in-vitro model of t-PA-induced hyperfibrinolysis using the EXTEM test of ROTEM may represent a promising tool to assess hyperfibrinolysis in the pediatric population. In addition, we observed that LOT and LI30 should be considered as the best parameters to detect different degrees of fibrinolysis.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.