• Resuscitation · Mar 1987

    Hemodynamic mechanisms in CPR: a theoretical rationale for resuscitative thoracotomy in non-traumatic cardiac arrest.

    • C F Babbs.
    • Resuscitation. 1987 Mar 1;15(1):37-50.

    AbstractExperimental work over the past decade has revealed three distinct mechanisms for generating artificial circulation during cardiac arrest and resuscitation. To isolate these mechanisms and study them in pure form, and in particular to characterize circulation during open vs. closed chest cardiopulmonary resuscitation (CPR), we developed an electrical model of the human circulatory system. Heart and blood vessels were modeled as resistive-capacitive networks, pressures in the chest, abdomen, and vascular compartments as voltages, blood flow as electric current, blood inertia as inductance, and the cardiac and venous valves as diodes. External pressurization of thoracic and abdominal vessels, as would occur in CPR, was simulated by application of half-sinusoidal voltage pulses. Simulations included two modes of creating artificial circulation: the cardiac pump mechanism, in which the atria and ventricles of the model were pressurized simultaneously, as occurs during open chest cardiac massage, and the thoracic pump mechanism, in which all intrathoracic elements of the model were pressurized simultaneously, as is likely to occur in closed chest CPR. The two mechanisms were compared for the same peak applied pressure (80 mmHg). Pure cardiac pump CPR generated near normal systemic perfusion pressures throughout the compression cycle. Pure thoracic pump CPR generated much lower systemic perfusion pressure only during the diastolic phase of the compression cycle. Simulation of cardiac compression at rates from 40 to 100/min produced total flows of 2500-3300, myocardial flows of 150-250 and cranial flows of 600-800 ml/min, depending on the compression rate. In contrast, thoracic pump CPR produced a total flow of approx. 1200, myocardial flow of 70, and cranial flow of 450 ml/min, independently of the compression rate. Direct cardiac compression is an inherently superior hemodynamic mechanism, because it can generate greater perfusion pressure throughout the compression cycle. If one presumes that improved blood flow during CPR is the key to more successful resuscitation, then it is reasonable to conclude that direct heart massage is the most effective available way to achieve this end.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.