• Eur J Pain · Mar 2010

    Central pain mechanisms following combined acid and capsaicin perfusion of the human oesophagus.

    • Christina Brock, Trine Andresen, Jens Brøndum Frøkjaer, Jeremy Gale, Anne Estrup Olesen, Lars Arendt-Nielsen, and Asbjørn Mohr Drewes.
    • Mech-Sense, Department of Gastroenterology, Aalborg Hospital, Denmark.
    • Eur J Pain. 2010 Mar 1;14(3):273-81.

    AbstractVisceral afferents originating from different gut-segments converge at the spinal level. We hypothesized that chemically-induced hyperalgesia in the oesophagus could provoke widespread visceral hypersensitivity and also influence descending modulatory pain pathways. Fifteen healthy volunteers were studied at baseline, 30, 60 and 90 min after randomized perfusion of the distal oesophagus with either saline or 180 ml 0.1M HCl+2mg capsaicin. Electro-stimulation of the oesophagus, 8 cm proximal to the perfusion site, rectosigmoid electrical stimulation and rectal mechanical and heat stimulations were used. Evoked brain potentials were recorded after electrical stimulations before and after oesophageal perfusion. After the perfusion, rectal hyperalgesia to heat (P<0.01, 37%) and mechanical (P=0.01, 11%) stimulations were demonstrated. In contrast, hypoalgesia to electro-stimulation was observed in both the oesophagus (P<0.03, 23%) and the sigmoid colon (P<0.001, 18%). Referred pain areas to electro-stimulation in oesophagus were reduced by 13% after perfusion (P=0.01). Evoked brain potentials to rectosigmoid stimulations showed decreased latencies and amplitudes of P1, N1 and P2 (P<0.05), whereas oesophagus-evoked brain potentials were unaffected after perfusion. In conclusion, modality-specific hyperalgesia was demonstrated in the lower gut following chemical sensitization of the oesophagus, reflecting widespread central hyperexcitability. Conversely, hypoalgesia to electrical stimulation, decreases in referred pain and latencies of evoked brain potentials was seen. This outcome may reflect a counterbalancing activation of descending inhibitory pathways. As these findings are also seen in the clinical setting, the model may be usable for future basic and pharmacological studies.Copyright 2009 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…