• Cochrane Db Syst Rev · May 2014

    Review Meta Analysis

    Antibody induction versus corticosteroid induction for liver transplant recipients.

    • Luit Penninga, André Wettergren, Colin H Wilson, An-Wen Chan, Daniel A Steinbrüchel, and Christian Gluud.
    • Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.
    • Cochrane Db Syst Rev. 2014 May 31; 2014 (5): CD010252CD010252.

    BackgroundLiver transplantation is an established treatment option for end-stage liver failure. To date, no consensus has been reached on the use of immunosuppressive T-cell specific antibody induction compared with corticosteroid induction of immunosuppression after liver transplantation.ObjectivesTo assess the benefits and harms of T-cell specific antibody induction versus corticosteroid induction for prevention of acute rejection in liver transplant recipients.Search MethodsWe searched The Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Science Citation Index Expanded, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) on 30 September 2013 together with reference checking, citation searching, contact with trial authors and pharmaceutical companies to identify additional trials.Selection CriteriaWe included all randomised clinical trials assessing immunosuppression with T-cell specific antibody induction versus corticosteroid induction in liver transplant recipients. Our inclusion criteria stated that participants within each included trial should have received the same maintenance immunosuppressive therapy.Data Collection And AnalysisWe used RevMan for statistical analysis of dichotomous data with risk ratio (RR) and of continuous data with mean difference (MD), both with 95% confidence intervals (CIs). We assessed risk of systematic errors (bias) using bias risk domains with definitions. We used trial sequential analysis to control for random errors (play of chance).Main ResultsWe included 10 randomised trials with a total of 1589 liver transplant recipients, which studied the use of T-cell specific antibody induction versus corticosteroid induction. All trials were with high risk of bias. We compared any kind of T-cell specific antibody induction versus corticosteroid induction in 10 trials with 1589 participants, including interleukin-2 receptor antagonist induction versus corticosteroid induction in nine trials with 1470 participants, and polyclonal T-cell specific antibody induction versus corticosteroid induction in one trial with 119 participants.Our analyses showed no significant differences regarding mortality (RR 1.01, 95% CI 0.72 to 1.43), graft loss (RR 1.12, 95% CI 0.82 to 1.53) and acute rejection (RR 0.84, 95% CI 0.70 to 1.00), infection (RR 0.96, 95% CI 0.85 to 1.09), hepatitis C virus recurrence (RR 0.89, 95% CI 0.79 to 1.00), malignancy (RR 0.59, 95% CI 0.13 to 2.73), and post-transplantation lymphoproliferative disorder (RR 1.00, 95% CI 0.07 to 15.38) when any kind of T-cell specific antibody induction was compared with corticosteroid induction (all low-quality evidence). Cytomegalovirus infection was less frequent in patients receiving any kind of T-cell specific antibody induction compared with corticosteroid induction (RR 0.50, 95% CI 0.33 to 0.75; low-quality evidence). This was also observed when interleukin-2 receptor antagonist induction was compared with corticosteroid induction (RR 0.55, 95% CI 0.37 to 0.83; low-quality evidence), and when polyclonal T-cell specific antibody induction was compared with corticosteroid induction (RR 0.21, 95% CI 0.06 to 0.70; low-quality evidence). However, when trial sequential analysis regarding cytomegalovirus infection was applied, the required information size was not reached. Furthermore, diabetes mellitus occurred less frequently when T-cell specific antibody induction was compared with corticosteroid induction (RR 0.45, 95% CI 0.34 to 0.60; low-quality evidence), when interleukin-2 receptor antagonist induction was compared with corticosteroid induction (RR 0.45, 95% CI 0.35 to 0.61; low-quality evidence), and when polyclonal T-cell specific antibody induction was compared with corticosteroid induction (RR 0.12, 95% CI 0.02 to 0.95; low-quality evidence). When trial sequential analysis was applied, the trial sequential monitoring boundary for benefit was crossed. We found no subgroup differences for type of interleukin-2 receptor antagonist (basiliximab versus daclizumab). Four trials reported on adverse events. However, no differences between trial groups were noted. Limited data were available for meta-analysis on drug-specific adverse events such as haematological adverse events for antithymocyte globulin. No data were available on quality of life.Authors' ConclusionsBecause of the low quality of the evidence, the effects of T-cell antibody induction remain uncertain. T-cell specific antibody induction seems to reduce diabetes mellitus and may reduce cytomegalovirus infection when compared with corticosteroid induction. No other clear benefits or harms were associated with the use of T-cell specific antibody induction compared with corticosteroid induction. For some analyses, the number of trials investigating the use of T-cell specific antibody induction after liver transplantation is small, and the numbers of participants and outcomes in these randomised trials are limited. Furthermore, the included trials are heterogeneous in nature and have applied different types of T-cell specific antibody induction therapy. All trials were at high risk of bias. Hence, additional randomised clinical trials are needed to assess the benefits and harms of T-cell specific antibody induction compared with corticosteroid induction for liver transplant recipients. Such trials ought to be conducted with low risks of systematic error and of random error.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.