• Anesthesiology · Feb 2000

    Review

    Perioperative heat balance.

    • D I Sessler.
    • Department of Anesthesia, University of California-San Francisco 94143-0648, USA. sessler@anesthesia.ucsf.edu
    • Anesthesiology. 2000 Feb 1;92(2):578-96.

    AbstractHypothermia during general anesthesia develops with a characteristic three-phase pattern. The initial rapid reduction in core temperature after induction of anesthesia results from an internal redistribution of body heat. Redistribution results because anesthetics inhibit the tonic vasoconstriction that normally maintains a large core-to-peripheral temperature gradient. Core temperature then decreases linearly at a rate determined by the difference between heat loss and production. However, when surgical patients become sufficiently hypothermic, they again trigger thermoregulatory vasoconstriction, which restricts core-to-peripheral flow of heat. Constraint of metabolic heat, in turn, maintains a core temperature plateau (despite continued systemic heat loss) and eventually reestablishes the normal core-to-peripheral temperature gradient. Together, these mechanisms indicate that alterations in the distribution of body heat contribute more to changes in core temperature than to systemic heat imbalance in most patients. Just as with general anesthesia, redistribution of body heat is the major initial cause of hypothermia in patients administered spinal or epidural anesthesia. However, redistribution during neuraxial anesthesia is typically restricted to the legs. Consequently, redistribution decreases core temperature about half as much during major conduction anesthesia. As during general anesthesia, core temperature subsequently decreases linearly at a rate determined by the inequality between heat loss and production. The major difference, however, is that the linear hypothermia phase is not discontinued by reemergence of thermoregulatory vasoconstriction because constriction in the legs is blocked peripherally. As a result, in patients undergoing large operations with neuraxial anesthesia, there is the potential of development of serious hypothermia. Hypothermic cardiopulmonary bypass is associated with enormous changes in body heat content. Furthermore, rapid cooling and rewarming produces large core-to-peripheral, longitudinal, and radial tissue temperature gradients. Inadequate rewarming of peripheral tissues typically produces a considerable core-to-peripheral gradient at the end of bypass. Subsequently, redistribution of heat from the core to the cooler arms and legs produces an afterdrop. Afterdrop magnitude can be reduced by prolonging rewarming, pharmacologic vasodilation, or peripheral warming. Postoperative return to normothermia occurs when brain anesthetic concentration decreases sufficiently to again trigger normal thermoregulatory defenses. However, residual anesthesia and opioids given for treatment of postoperative pain decreases the effectiveness of these responses. Consequently, return to normothermia often needs 2-5 h, depending on the degree of hypothermia and the age of the patient.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.