-
Neuroscience research · Jan 2007
Synaptic plasticity modulates the spontaneous recovery of locomotion after spinal cord hemisection.
- Rosario Gulino, Massimo Dimartino, Antonino Casabona, Salvatore Andrea Lombardo, and Vincenzo Perciavalle.
- Department of Physiological Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
- Neurosci. Res. 2007 Jan 1;57(1):148-56.
AbstractSeveral evidences have demonstrated that adult mammals could achieve a wide range of spontaneous sensory-motor recovery after spinal cord injury by means of various forms of neuroplasticity. In this study we evaluated the possibility that after low-thoracic spinal cord hemisection in the adult rat, significant hindlimb locomotor recovery could occur, and that this recovery may be driven, at least in part, by mechanisms of synaptic plasticity. In order to address these issues, we measured the expression levels of synapsin-I and brain-derived neurotrophic factor by Western blotting, at various time points after hemisection and correlated them with the motor performance on a grid walk test. Regression analysis showed that the expression of synapsin-I was strongly correlated with the spontaneous recovery of hindlimb locomotion (R=0.78). Conversely, neither the expression levels of synapsin-I nor the locomotor recovery were associated with the expression of brain-derived neurotrophic factor. Overall results indicate that after spinal cord hemisection, substantial recovery of hindlimb locomotion could occur spontaneously, and that synaptic plasticity within spinal circuitries below the level of the lesion, could be an important mechanism involved in these processes.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.