• Anesthesia and analgesia · Jan 2009

    Electrical noise in the intraoperative magnetic resonance imaging setting.

    • Roger Dzwonczyk, Jeffrey T Fujii, Orlando Simonetti, Ricardo Nieves-Ramos, and Sergio D Bergese.
    • Departments of Anesthesiology, The Ohio State University, Columbus, Ohio 43214, USA. dzwonczyk.1@osu.ed
    • Anesth. Analg. 2009 Jan 1;108(1):181-6.

    BackgroundIntraoperative magnetic resonance imaging (iMRI) is a tool now commonly used in neurosurgery. Safe and reliable patient care in this (or any other) operating room setting depends on an environment, where electrical noise (EN) does not interfere with the operation of the electronic monitoring or imaging equipment. In this investigation, we evaluated the EN generated by the iMRI system and the anesthesia patient monitor used at this institution that impacts the performance of these two devices.MethodsWe measured the EN generated by our iMRI-compatible anesthesia patient monitor as detected by the EN analysis algorithm in our iMRI system. We measured the EN generated by our iMRI system during scanning as detected in the electrocardiogram (ECG) waveform of our patient monitor. We analyzed the effects on EN reduction and signal quality of the ECG noise filters provided in our iMRI-compatible anesthesia patient monitor.ResultsOur patient monitor generated EN that was detectable by the iMRI EN analysis algorithm; however, this interference was within the iMRI manufacturer's acceptable limits for an iMRI scan (<10% more than background system-level noise). In the clinical case analyzed, the iMRI generated a narrow-band low-frequency (20 Hz) relatively high-energy EN that interfered with the ECG signal of our patient monitor during an iMRI scan. This EN was correlated with the acoustic noise from the iMRI system during the scan and was associated with the radio frequency (RF) and magnetic gradient pulsations of the iMRI system. The integrity of the ECG waveform was nearly entirely lost during a scan. The filters of the ECG monitor diminished but did not entirely eliminate this 20 Hz interference. We found that the filters alter the morphology of the ECG signal, which may make it difficult to identify clinically relevant ECG changes.ConclusionThe EN generated by our anesthesia patient monitor is within acceptable limits for the iMRI system. The iMRI generates EN which renders the ECG unreadable in the most commonly used filter mode. The monitor's filters diminish this noise but also alter the morphology of the ECG waveform. The anesthesiologist must be cognizant of these technical compromises and recognize that adjusting the ECG filters on the monitor is required to obtain a useful ECG signal for patient monitoring during the iMRI scan but that the diagnostic value of the ECG will be reduced.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.