• Neuropharmacology · Oct 2015

    Calpain inhibitor, MDL 28170 confer electrophysiological, nociceptive and biochemical improvement in diabetic neuropathy.

    • Shivsharan B Kharatmal, Jitendra N Singh, and Shyam S Sharma.
    • Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
    • Neuropharmacology. 2015 Oct 1; 97: 113-21.

    AbstractCalpain plays an important role in the pathophysiology of neurological and cardiovascular complications, but its functional association in diabetic neuropathy is not yet elucidated. Therefore, we investigated the role of calpain in modulation of tetrodotoxin-resistant sodium channels (TTX-R Na(+) channels) in dorsal root ganglion (DRG) neurons using a pharmacological approach. The effects of a calpain inhibitor, MDL 28170 (3 and 10 mg/kg, i.p.) on TTX-R Na(+) channels in DRG neurons of streptozotocin-induced diabetic rats were assessed by using whole-cell patch-clamp technique. In addition to this biochemical, functional and behavioral deficits were also measured. Diabetic rats demonstrated the mechanical allodynia and thermal hyperalgesia with reduced nerve perfusion and conduction velocity as compared to control. MDL 28170 treatments significantly recovered these functional and nociceptive deficits. Moreover, diabetic rats exhibited increased calpain activation, lipid peroxidation and proinflammatory cytokines as compared to control. Drug treatment significantly improved these biochemical deficits. Additionally, DRG neurons from diabetic rats illustrated a significant increase in TTX-R sodium current (INa) density as compared to control. MDL 28170 treatments in diabetic rats significantly blocked the altered channel kinetics with hyperpolarizing shift in voltage-dependence of steady-state activation and inactivation curves. All together, our study provides evidence that calpain activation is directly associated with alterations in TTX-R Na(+) channels and triggers functional, nociceptive and biochemical deficits in experimental diabetic neuropathy. The calpain inhibitor, MDL 28710 have shown beneficial effects in alleviating diabetic neuropathy via modulation of TTX-R Na(+) channel kinetics and reduction of oxidative stress and neuro-inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…